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ABSTRACT
Magnetic sensing is emerging as an enabling technology for vari-
ous engaging applications. Representative use cases include high-
accuracy posture tracking, human-machine interaction, and haptic
sensing. This technology uses multiple MEMS magnetometers to
capture the changing magnetic field at a close distance. However,
magnetometers are susceptible to real-world disturbances, such
as hard- and soft-iron effects. As a result, users need to perform a
cumbersome and lengthy calibration process frequently, severely
limiting the usability of magnetic tracking.

To remove/mitigate this limitation, we propose MAGIC (MAGneto-
meter automatIc Calibration), a systematic framework to automati-
cally calibrate both soft- and hard-iron disturbances for a MEMS
magnetometer array. To minimize the need for user intervention,
we introduce a novel auto-triggering module. Unlike the legacy
manual calibration method, MAGIC achieves superior calibration
performance (e.g., for tracking applications) with minimal user at-
tention. Via empirical studies, we show MAGIC also incurs marginal
overhead and cost, such as a total energy cost of 0.108 J.
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1 INTRODUCTION
Magnetic tracking of passive magnets as battery-free “markers” is
a recent, emerging way to support novel interactive applications.
Compared to other sensing modalities, such as computer vision,
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RFID, and motion sensors, magnetic tracking maintains robust
tracking across various environments and situations. For example,
magnet-based hand gesture tracking [13–15, 43] can reliably track
hand/finger movements in non-line-of-sight (NLOS) situations. Fur-
thermore, magnetic tracking offers a fine-grained resolution to
closely monitoring knee movements [34], subtle changes of mus-
cle length [44], and can even sense tactile events such as touches
through a magnetic “skin” [10].

Magnetic tracking often uses a MEMS magnetometer [27] array
to find the 3D position of nearby passive magnet(s). For exam-
ple, [13] used an eight-sensor, wearable and untethered array. [14]
proposed a two-sensor, finger-worn array. Compared to other mag-
netic sensors, such as fluxgate sensor [36], MEMS magnetometers
are compact, energy-efficient and low-cost which is essential for
real-world apps.

However, MEMS magnetometers require frequent manual cali-
bration, undermining the ability to trackmagnets over time. As seen
in Sec. 2, commodity MEMSmagnetometers suffer from continuous,
intrinsic drift. These erroneous sensor readings, if left unaddressed,
increasingly degrade tracking performance and applications.

The root causes of this problem are hard- and soft-iron effects [30]
in MEMSmagnetometers. Specifically, the hard-iron effect is caused
by magnetic objects with a constant additive magnetic field (e.g.,
household magnets). The soft-iron effect is due to ferromagnetic
objects that distort (e.g., iron and nickel) an existing magnetic field.
Thus, hard- and soft-iron effects cause data offset and scale distor-
tion, respectively, in magnetometer sensor readings. To overcome
hard- and soft-iron disturbances, a thorough and accurate calibra-
tion is necessary for magnetic tracking and localization applica-
tions.

Unfortunately, state-of-the-art calibration procedures are cum-
bersome as users have to manually hold the sensing platform and
make lengthy movements (such as a figure-8 motion) — a necessary
step to have diverse readings from all three axes (i.e., x, y, z) of
the sensor. Note that the existing calibration methods are predomi-
nantly designed for handheld devices, thus making them infeasible
for magnetic tracking apps. For example, a sensing array may be
worn on the lower body that cannot be easily dismantled or moved
to perform motion-based calibration. Thus, the calibration proce-
dure can severely undermines the usability of magnetic tracking in
practice.

To achieve a reliable and usable calibration performance, we
start with answering the following two questions.
Q1: Can we calibrate the magnetometer array with minimal
user involvement? As we will elaborate in Sec. 3, the movement-
based calibration severely undermines the usability of magnetic
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Figure 1: Applying MAGIC on magnetic tracking systems only
incurs minimal overhead.

tracking apps. A practical solution should enable quick calibration
of soft- and hard-iron effects with minor user involvement.
Q2: Can we trigger the calibration procedure automatically?
Apractical magnetic sensing system should be able to detect whether
or not it needs to correct soft/hard-iron errors. This feature has two
advantages: it (1) enables calibration without interrupting its regu-
lar usage (i.e., without alerting and requiring the user to manually
calibrate); (2) improves the efficiency of the calibration procedure.
These are essential as mobile magnetic tracking apps demand low
latency, high sensing accuracy, and low power consumption.

In this paper, we present MAGIC, a method for automatically cal-
ibrating MEMS magnetometers with minimal user involvement,
power consumption, and computational overhead. MAGIC can pro-
vide users a calibrate-as-you-use (CAYU) experience, thus achieving
high usability and reliability of magnetic sensing. MAGIC is com-
prised of two key modules:

• Calibration Module: calibrates both hard- and soft-iron
disturbances with minimal user intervention.

• Auto-triggering Module: automatically determines if the
sensing platform needs calibration.

We eliminate/mitigate the need for manual calibration by intro-
ducing a novel calibration algorithm for high accuracy magnetic
tracking platforms using multiple magnetometers. MAGIC can fully
calibrate the soft- and hard-iron effects without any movement of
the platform and is resilient to the soft-iron anomaly (as we will
articulate in Sec. 3.2), a soft-iron mis-prediction that can severely
undermine the performance of magnetic sensing. To the best of
our knowledge, MAGIC is the first practical solution to address the
soft-iron anomaly.

For the auto-triggering module (Sec. 5), we propose a lightweight
algorithm to efficiently detect environmental changes without in-
terrupting the regular usage of the sensing platform. The form
factor of MAGIC’s calibration module can also be integrated with
existing magnetic sensing platforms. As illustrated in Fig. 1, MAGIC
can be easily installed on existing magnetic tracking systems [13].
We design hardware based on its principles; specifically, we build
a solenoid magnetic coil for each magnetometer to generate the
calibrated magnetic field. We stabilize the coil with a 3D-printed
stand and designed a current-controlled driving circuit for the coils,
as detailed in Sec. 6.

Sec. 7 evaluates MAGIC’s reliability and usability via empirical
studies. Specifically, our experimental results show MAGIC to be
able to fully calibrate both hard- and soft-iron effects. For analyti-
cal, filter- and machine-learning-based tracking schemes, MAGIC’s
calibration outperforms the lengthy full-sphere calibration with
less overhead (e.g., less user’s movement and attention).

This paper makes the following contributions. (1) Development
of a novel calibration pipeline, MAGIC, for handling both hard- and
soft-iron disturbances on mobile magnetic sensing systems; (2)
proposal of an auto-triggering scheme for determining when to
calibrate; and (3) evaluation of MAGIC’s calibration performance
with a functioning prototype.

2 BACKGROUND
We first cover the background of hard- and soft-iron effects, and
elaborate on the differences between the new emerging magnetic
sensing and the e-compass applications. Next, we articulate how
COTS devices tackle the calibration problem. Finally, we analyze
the calibration issue for existing magnetic sensing techniques.

2.1 Why is Calibration Needed?
A MEMS magnetometer suffers from disturbances from both exter-
nal magnetic environments (hard- and soft-iron effects) and internal
drift. A combination of these two severely distorts and alters the
sensor readings, resulting in poor tracking performance.

2.1.1 Hard-iron effect. The hard-iron effect [9] is generated when
permanently magnetized ferromagnetic objects [30] create an in-
duced magnetic field in surrounding ferromagnetic materials. In
magnetometers, the generated magnetic field causes a permanent
bias, adding a constant offset to the sensor readings.

2.1.2 Soft-iron effect. The soft-iron effect [37] stems from the in-
duced magnetic field by un-magnetized ferromagnetic materials,
such as iron and steel. These ferromagnetic components [30] will
generate an induced magnetic field proportionally to the local mag-
netic field, and thus distort the magnetometer readings. The hard-
iron effect is usually modeled as a 3D offset of the magnetic field,
while the soft-iron effect is strongly associated with the axis and
usually modeled as a six-component symmetric matrix.

Besides the soft- and hard-iron effects incurred in an outdoor
magnetic environment, the magnetometer itself also suffers from
an internal drifting problem. We conducted a simple experiment
by placing a small magnet near an LSM9DS1 MEMS magnetometer
[2]. The magnetometer and its environment are kept intact during
the data collection, as shown in Fig. 2. Our result indicates that
the magnetometer reading gradually changes in both settings only
within five minutes. Note that the observed drift is not due to
the change of earth magnetic field, which only has a less than 25
nanotesla (nT) daily variation [41]. Therefore, if the magnetometer
is used without calibration, the hard-/soft-iron effect will yield
erroneous data that may cause systems like e-compass [35] to fail.

2.2 Demystifying Existing Magnetometer
Calibration Methods

We start with answering the following key questions.
Q1: How do COTS devices calibrate their magnetometers?
When calibration is needed, the system will instruct the user to
perform a “figure-8” movement [3] repetitively. This movement is
part of a magnetometer calibration routine using the Kasa sphere
fitting algorithm [23] which efficiently computes a sphere’s center
and radius by solving a set of linear equations under the assumption
that the magnetometer’s reading is only from the earth’s magnetic
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Figure 2: Drifts of magnetometer, w/ and w/o a nearby mag-
net, we present the x-axis data. An example of magnetometer
drift is smartphone compass drift.

field. By instructing the user to repetitively make a figure-8 move-
ment, the magnetometers take readings at different angles for the
algorithm to perform a more accurate spherical fitting. This calibra-
tion is required often and implemented within the Android source
code [6]
Q2: Aren’t existing COTS devices (e.g., smartphone and UAVs)
already telling users when to calibrate? Existing electronic
devices, such as smartphones, can prompt pop-up messages to
warn users of poor magnetometer accuracy. For example, COTS
mobile devices usually notify users with a message “the device’s
compass needs calibration”.

We examine the COTS method by analyzing the Android calibra-
tion code base [6]. Specifically, there is no built-in detection system
to automatically determine whether the soft/hard-iron error should
be handled via calibration. Instead, a global flag calibration_quality
is used to indicate if there is any update of the magnetometer’s pa-
rameter since the last system reboot. The default value for “calibra-
tion_quality” is UNDETERMINED, suggesting there is no magnetome-
ter calibration, and hence may yield inaccurate sensor readings. The
calibration is implemented by calling an “online calibrate” function,
which derives the calibration parameter with the user’s figure-8
shape movement and Kasa fitting algorithm. After the Kasa fitting,
“calibration_quality” will be set to HIGH_QUALITY, indicating the
magnetometer reading has been calibrated.

2.3 Premier of Magnetic Tracking
Magnetic tracking is an emerging sensing technology that utilizes
the near-field magnetic field for high-accuracy tracking [13, 43],
positioning [34], or pattern recognition [10]. Compared to state-of-
the-art tracking approaches, magnetic tracking achieves high accu-
racy at low cost. Specifically, computer vision approaches [24, 38]
fall short due to their occlusion (i.e., NLOS) problem. RF-based
approaches [28, 46] may suffer from the multipath problem, thus
undermining their performance of robust tracking. Inertial measure-
ment units (IMUs) can achieve embedded motion tracking [39, 40],
but suffer from the drift problem, incurring an accumulated error.
Existing magnetic tracking systems usually use multiple COTSmag-
netometers to track the varying magnetic field, which is induced
by passive magnet, electromagnet, or ferromagnetic objects.

Figure 3: Comparison of existing calibration methods.

Compared to other tracking and sensing techniques, magnetic
tracking has the following challenges/features:

(1) Magnetic tracking needs to carefully address the noisy sensor
data. Specifically, magnetic field strength decreases rapidly
(i.e., inverse cube [31]) with the distance between the magnet
and the sensor array.

(2) Sensitive to soft- and hard-iron changes. That is, a subtle
change of soft- and hard-iron parameters can drastically
influence the sensing accuracy. We will further elaborate
their impact in Sec. 7.1.

(3) The sensory platform is usually built with an array of MEMS
magnetometers.

(4) The background magnetic field is usually treated as a global
offset to the sensor readings.

Note that these features differentiate magnetic tracking apps from
conventional e-compass apps. Next, we articulate magnetometer
calibration methods and why legacy approaches are ill-suited for
magnetic sensing apps. In MAGIC, we mainly focus on solving the
calibration issue for passive magnet tracking [13, 43].

The passive magnet tracking algorithm works by sensing the
varying spatial distribution of magnetic field modeled by dipole
model [12]. For example, [29] proposed a lightweight finger tracking
system by attaching magnet on the user’s finger tip, and MagX [13]
is a high accuracy mobile magnetic system for hand tracking. We
use the open source MagX project as our testbed to validate MAGIC’s
performance. MagX separates the magnetic field generated by
the passive magnet from the background magnetic field by using
Levenberg-Marquardt (LM) algorithm. The magnet field observed
on the sensor can be represented as a linear combination of the
magnetic field generated by each magnet and the background mag-
netic field as expressed in Eq. (1). The problem is to estimate the
magnet position and orientation given the sensor reading. We refer
interested readers to [32] for more details.
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3 WHY MAGIC?
3.1 Performance of Existing Methods
We conducted an empirical study of the performance of existing cal-
ibration methods on a magnetic tracking platform, using the public
repository of [13]. We employed the ellipsoid-fitting method for
calibration and three representative calibration movements, i.e., 8-
shaped, tilting, and full-sphere methods. Note Google recommends
8-shaped and tilting methods for smartphones and tablets [3]. In
the full-sphere movement, users need to evenly distribute magnetic
sensor readings on the surface of a sphere. For this, the user has to
rotate the sensor array thoroughly. Fig. 3 shows the distribution of
sensor readings of three movements.

For further investigation of the usability of these methods, we
recruited three volunteers of age between 21 to 30. The average
amounts of time taken for 8-shaped, tilting, and full-sphere calibra-
tions were approximately 2.3, 4, and 5 seconds. Next, each volunteer
calibrates the sensor using the three different methods. Finally, we
apply the derived hard- and soft-iron parameters for each calibra-
tion process for the magnet tracking app. Specifically, we collect
the magnetometer readings and ground truth with MagX and Leap
Motion (as indicated in [13]), respectively.

Fig. 3 shows the tracking accuracy of 21 cm. Specifically, all cali-
bration methods can mitigate the tracking error rate. The 8-shaped
movement converges faster with a better tracking performance
than the tilting method. The full-sphere method shows the best
tracking accuracy despite its longest convergence time. Hence, the
existing calibration methods require user involvements to achieve
high sensing accuracy, thus limiting their usability and reliability.

3.2 Limitations of State-of-the-Arts
Navigation apps using the e-compass are the predominant usage
scenario for conventional calibration methods on mobile devices.
The calibration only needs to correct the magnetic field’s direction
(e.g., North or South poles). In practice, the calibration process
projects sensor readings to a unit sphere.

Compared to the e-compass app, accurate information on the
radius of sphere is essential for magnetic sensing apps. Therefore,
the radius should reflect the earth’s magnetic field rather than just
a unit scalar. For example, the authors of MagX [13] conducted an
8-shaped motion calibration and then used sphere fitting for each
magnetometer. The earth magnetic field𝐺 is estimated as the mean

of the radii of all fitted spheres𝐺 =

∑𝑁
𝑖=1 𝑟𝑖
𝑁

. The soft-iron parameter
for magnetometer 𝑖 is derived as 𝛼𝑖 = 𝑟𝑖

𝐺
, and the calibrated sensor

reading is �̂� = (𝐵 − 𝛽)/𝛼 , where 𝛽 is the hard-iron parameter.
However, it falls short if there is a nontrivial soft-iron distor-

tion. Let us consider two magnetometers with different soft-iron
distortions. Suppose the actual 𝐺 is 50𝜇𝑇 , then the estimation
𝐺 = 1

2 (𝑟1 + 𝑟2) = 1
2 (

1
2𝐺 + 1

1𝐺) = 3
4𝐺 deviates ≈ 25% from the

ground truth. We call this estimation error soft-iron anomaly. Thus,
existing calibration methods are ill-suited for multi-magnetometer
sensing systems.

3.3 Overview of MAGIC
MAGIC is a self-calibration scheme that can correct both soft- and
hard-iron disturbances with minimal user involvement. As shown

Baseline setting

Magnetometer readings, sensing result

Error detection Soft iron 
calibration

Hard-iron 
calibration

Auto-triggering module Calibration module Supporting apps

Motion tracking, ML-
based sensing, etc.

…

Figure 4: Overview of integrating MAGIC with tracking apps.

in Fig. 4, MAGIC consists of two key modules: (a) the calibration
module for correcting both hard- and soft-iron disturbances and
(b) the auto-triggering module to detect if calibration is needed. In
Secs. 4 and 5, we provide the theoretical underpinnings of MAGIC’s
calibration and auto-triggering, respectively.

4 SOFT AND HARD-IRON CALIBRATION
We first articulate the theoretical underpinning of soft-iron cali-
bration and then present a novel hardware–software co-design of
soft-iron calibration. Finally, we introduce our hard-iron calibration
method.

4.1 Soft-iron Calibration
For calibration against soft-iron disturbances, the key idea is to use
a controllable magnetic field to achieve deterministic readings on
magnetometers. By exploring the relationship between the sensor
reading and the deterministic magnetic field, we can derive the
soft-iron parameters.

A controllable magnetic field can be obtained with electromag-
net(s). Suppose there is one electromagnet near the platform, then
the reading of magnetometer 𝑖 can be:

𝐵𝑖 = 𝐺 + 𝜇0
4𝜋

( 3(𝑚 · 𝑟𝑖 )𝑟𝑖
|𝑟𝑖 |5

− 𝑚

|𝑟𝑖 |3
) (1)

where the𝐺 is the background magnetic field, and ®𝑟 is the distance
between the sensor and the electromagnet.

If the relative position and orientation between the electromag-
net and the sensors do not change, the magnet moment should be
proportional to the current. Now, the right-hand side is a function
of the current:

𝐵𝑖 = 𝐺 + ℎ(𝐼 ). (2)

Since the magnetometer experiences both soft- and hard-iron
disturbances, its readings can be modeled as:

𝐵𝑖 = 𝛼𝐵𝑖 + 𝛽, (3)

where 𝛼 (𝛽) is the soft(hard)-iron effect, 𝐵𝑖 is the ideal sensor read-
ing, and �̂�𝑖 is the observed sensor reading. Eq. (3) now is:

𝐵𝑖 = 𝛾𝐵𝑖 + 𝜆 (4)

Assume𝐺 remains constant during the calibration process, with
Eq. (2), one can then convert Eq. (4) to:

𝛾�̂� + 𝜔 = ℎ(𝐼 ), (5)

where 𝜔 = 𝜆 −𝐺 . By applying different current 𝐼 , one can have a
system of linear equations. The parameters 𝛾 and 𝜔 can be solved
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efficiently. Unlike other calibration methods, MAGIC’s soft-iron cali-
bration algorithm calculates the soft-iron parameter directly, mak-
ing it insusceptible to soft-iron anomaly (as we elaborated in Sec. 3.2).

4.2 Hard-iron Calibration
After fixing the soft-iron distortion, MAGIC corrects the hard-iron
offset. First, we express the reading of sensor 𝑖 as a linear combi-
nation of the signal of interest (𝐵𝑠𝑖𝑔𝑛𝑎𝑙 ), the background magnetic
field (𝐺), and the hard-iron offset (𝛽𝑖 ):

𝐵𝑖 = 𝐺 + 𝛽𝑖 + 𝐵𝑠𝑖𝑔𝑛𝑎𝑙 . (6)

Since 𝛽𝑖 is a constant component, we employ an efficient “reset”
process to eliminate the hard-iron drift. Specifically, if 𝐵𝑠𝑖𝑔𝑛𝑎𝑙 is neg-
ligible (e.g., 𝐵𝑠𝑖𝑔𝑛𝑎𝑙 ≈ 0) during the calibration, the sensor reading
can be expressed as:

�̂�𝑐𝑎𝑙𝑖𝑖 = 𝐺0 + 𝛽𝑖 , (7)
where 𝐺0 is the background magnetic field during calibration.

After calibration, the sensor reading can be:

�̂�′
𝑖 = �̂�𝑖 − �̂�𝑐𝑎𝑙𝑖𝑖 = 𝐵𝑠𝑖𝑔𝑛𝑎𝑙 +𝐺 −𝐺0 = 𝐵𝑠𝑖𝑔𝑛𝑎𝑙 +𝐺 ′, (8)

where 𝐺 ′ is the shifted background magnetic field.
In the passive magnet tracking system with the LM algorithm,

𝐵𝑠𝑖𝑔𝑛𝑎𝑙 is the magnetic field generated by the passive magnet. The
cost function of the LM algorithm after hard-iron calibration is:

𝐸𝑖 = 𝐵𝑖 − (𝐵𝑖 − �̂�𝑐𝑎𝑙𝑖𝑖 ), (9)
where

𝐵𝑖 − �̂�𝑐𝑎𝑙𝑖𝑖 =
𝜇0
4𝜋

( 3(𝑚 · 𝑟𝑖 )𝑟𝑖
|𝑟𝑖 |5

− 𝑚

|𝑟𝑖 |3
) +𝐺 −𝐺0 (10)

which only includes the magnetic field generated by the magnet
and the shifted earth magnetic field, thus effectively alleviating the
hard-iron offset.

5 AUTOMATIC TRIGGERING
As a major application of magnetic sensing, activity tracking [13,
43], requires continuous and in situ usage experience. To meet
this requirement, we propose an auto-triggering of calibration. As
shown in Fig. 4, this automatic triggering consists of two compo-
nents: baseline setting and detection. The baseline setting derives a
novel set of features to characterize the magnetic state of a sensory
platform. Based on the thus-derived baseline, the second component
uses an efficient decision tree to determine whether a soft/hard-iron
calibration is needed.

5.1 Baseline Setting
MAGIC enters the baseline setting stage after configuring soft- and
hard-iron parameters. The baseline setting stage utilizes the magnet
tracking results and the background magnetic field, i.e., 𝐺 .

We propose use of the following features to characterize the
sensing platform:

• (𝛼, 𝛽): 𝛼 and 𝛽 are the scale and the offset derived from the
sphere-fitting algorithm by using 𝐺 .

• 𝑀𝑆𝐸𝑏𝑎𝑠𝑒 :
∑
𝑖 [(𝐵𝑖 − 𝛽)2 − 𝛼2]: the mean square error (MSE)

of the fitting process.

To ensure the baseline setting stage has sufficient data for sphere
fitting, we adopt the diversity checker mechanism [7] used in An-
droid OS. The algorithm calculates the minimum distance 𝑑 from
𝐺𝑡 (i.e., 𝐺 at time 𝑡 ) to all collected 𝐺 .

𝑑𝑡 = min
𝐺𝑖 ∈G

| |𝐺𝑡 −𝐺𝑖 | |2, (11)

where G is the set of collected 𝐺 . 𝐺𝑡 will be added to the collected
data only when 𝑑𝑡 is larger than the distance threshold T𝑑𝑖𝑠 . We
invoke the sphere fitting algorithm once the buffer is full, i.e., the
amount of accumulated data reaches T𝑏𝑢𝑓 𝑓 𝑒𝑟 . Note that T𝑑𝑖𝑠 and
T𝑏𝑢𝑓 𝑓 𝑒𝑟 are hyperparameters that only need one-time factory reset.

We will elaborate the baseline setting stage with the empirical
study in Sec. 5.2. After tuning suitable parameter(s) for T𝑑𝑖𝑠 and
T𝑏𝑢𝑓 𝑓 𝑒𝑟 , one can efficiently conduct the baseline setting with a
marginal time overhead.

5.2 Detection Stage
After obtaining the baseline, the detection stage will be triggered
periodically to check if a re-calibration is needed. The sensor read-
ings and the tracking results at each timestamp will be stored and
grouped into frames for the detection stage. The detection algo-
rithm will be applied to each frame and output a binary decision,
indicating whether the sensing platform needs to be re-calibrated
or not.

If the soft/hard-iron parameter changes, then the sensor reading
will be distorted, thus increasing the tracking error of the mag-
net position/orientation and the background magnetic field (𝐺).
Specifically, we have made two observations from real-world soft-
/hard-iron disturbances. First, there is a large variation (e.g., a zigzag
pattern) in the tracking trajectory of the magnet. Second, the de-
rived 𝐺 will be distorted compared to that obtained from the base-
line setting stage. For example, the derived sphere would be shifted
or distorted if the soft-/hard-iron environment changes (as shown
in Fig .5(a)), thus affecting the derived offset and scale.

We therefore design the following set of features for reflecting
the varying soft-/hard-iron effects on the sensing platform.

• 𝑎𝑣𝑔
(
|𝑃𝑚𝑎𝑔 |

)
: average Euclidean distance from the magnet

to the original point;
• (𝛼, 𝛽): the sphere-fitting result by using the background
magnetic field;

• (|𝛼 − 𝛼 |, |𝛽 − 𝛽 |): the difference in scale and offset; and
• 𝑀𝑆𝐸𝑑𝑒𝑡𝑒𝑐𝑡 :

∑
𝑖 [(𝐺𝑖 − 𝛽)2 − 𝛼2].

We use 𝑎𝑣𝑔
(
|𝑃𝑚𝑎𝑔 |

)
for determining the reliability of magnet track-

ing results. 𝛼 , 𝛽 , MSE, and |𝛼 − 𝛼 |, |𝛽 − 𝛽 | depict the changes of the
background magnetic field. If the MSE is larger than the baseline,
we can conclude that the soft/hard-iron parameters are changed
(as shown in Fig .5(b)).

The detection stage leverages these features to determine if the
platform needs calibration. Specifically, we only consider the system
running normally when (a) |𝑃𝑚𝑎𝑔 | <= 40; (b) |𝛼 −𝛼 | < 𝑘1, |𝛽 −𝛽 | <
𝑘2; (c)𝑀𝑆𝐸𝑑𝑒𝑡𝑒𝑐𝑡 < 𝑘3𝑀𝑆𝐸𝑏𝑎𝑠𝑒 .

According to our empirical study (Sec. 7.3), by tuning these
thresholds (i.e., 𝑘1, 𝑘2, and 𝑘3) and using a grid search, MAGIC can
achieve 75% F-1 score with almost no power consumption. Note that
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(a) shifted offset (b) MSE larger than baseline

Figure 5: Detecting the change of soft/hard-iron effects.

these hyperparameters are constant for apps. Tuning the parameters
is a one-time effort (e.g., factory setting) for the users.

6 HARDWARE IMPLEMENTATION
To facilitate the thus-proposed calibration scheme in the real world,
MAGIC’s hardware must meet two design goals. First, MAGIC should
enable a controllable and evenly distributed calibrating signal on
three axes of each sensor. Second, the calibration should incur low
overheads, especially in energy consumption and installation cost.

We employ magnetic coils to achieve the first goal. According
to Ampére’s law in electromagnetism [17], one can control the
coil’s magnetic field (𝐵𝑐𝑜𝑖𝑙 ) by tuning the current, the number of
wraps, and coil length. Specifically, 𝐵𝑐𝑜𝑖𝑙 = 𝜇0𝑛𝐼 , where 𝜇0 is the
magnetic constant, 𝑛 is the number of wraps of the coil, and 𝐼 is the
current. We design a magnetic coil for each sensor in MAGIC. Next,
we elaborate on three key design elements: coil, form factor, and
calibrating signal.

6.1 Coil Design
We apply air-core solenoid coils for generating a magnetic field. To
generate an evenly-distributed magnetic field on all three axes, we
need to address a key question: how to place the coil for each sensor?

For each magnetometer, the observed magnetic field is:

𝐵𝑐𝑜𝑖𝑙 =
𝜇0
4𝜋

( 3(𝑚 · 𝑟 )𝑟
|𝑟 |5

− 𝑚

|𝑟 |3
) . (12)

Since |𝐵𝑐𝑜𝑖𝑙 | changes linearly with |𝑟 | and |𝑚 |, we use normalized
𝑟 and𝑚 to simplify the problem:

(1) 𝑟 = [sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃 ]𝑇
(2) 𝑚 = [sin 𝛽 cos𝛾, sin 𝛽 sin𝛾, cos 𝛽]𝑇 ,

where 𝜃, 𝜙 are the position of the electromagnet in sphere coordi-
nates, 𝛽,𝛾 are the orientation of the electromagnet.

According to Eq. (12), the sensor will observe a magnet field
parallel to the direction from the electromagnet to the sensor when
the North pole of the electromagnet is pointing towards the sen-
sor. Therefore, given 𝜃 = 𝛽, 𝜙 = 𝛾 , 𝐵𝑥 : 𝐵𝑦 : 𝐵𝑧 = sin𝜃 cos𝜙 :
sin𝜃 sin𝜙 : cos𝜃 , we can have 𝐵𝑥 : 𝐵𝑦 : 𝐵𝑧 = 1 : 1 : 1 by setting
𝜃 = 54.73◦, 𝜙 = 45◦ — the optimal alignment for our coils.

A compact design of the coil’s form factor (e.g., diameter and
length) is essential for MAGIC’s usability. According to Biot-Savart
law [19], the magnetic field strength is inversely proportional to
the distance cubed. To enable a small form factor, we install a small
coil for each magnetometer in the sensing array. According to the
Ampere’s law, this design also provides a sufficient magnetic field
with minimal electric current. Our empirical study used two coil
sizes (dimension, length) = (1.4 mm, 6.57 mm) and (0.7 mm, 4.45

mm). As shown in our experimental results in Sec. 7, a smaller coil
size does not undermine the calibration performance. In MAGIC, we
use the coil design as shown in Fig. 6 A.

We construct a 3D-printed stand to facilitate the form factor
and stabilize the coil. Fig. 6A shows the coil stand. To stabilize
the coil, we first insert it through the internal diagonal opening of
the stand. Next, we glue the stand on the tracking platform. One
can also stabilize the stand with strong glue (e.g., epoxy), achieving
maximum stability of the coil. Our final assembly of the coil design is
shown in Fig. 6B. Note that the assembly ensures the coil orientation,
𝜃 = 54.73◦, 𝜙 = 45◦. By miniaturizing the coil and stand, we can
further shrink the size of the assembly for integration into compact
magnetic sensing platforms.

6.2 Calibrating Signal and Driving Circuit
According to the soft-iron calibration scheme, we employ a rect-
angular signal for driving the proposed coils. Specifically, we con-
trol the current with a constant-current circuit design. The driv-
ing circuit receives the control signal from the micro-control unit
(MCU) and generates a constant current for all coils. Fig. 7 shows
its schematics. LT3055EDE [1] is a linear regulator with an internal
protection circuitry. It can protect MCU from the reverse current
in the coil circuit.

We examine the magnetic field patterns induced by different
current settings. Specifically, we tested four current settings, i.e., 63
mA, 110 mA, 164 mA, and 293 mA. As shown in Fig. 8, although all
current settings can effectively induce a noticeable magnetic field,
a lower current may lead to fluctuations in the magnetic field. So,
we choose 110 mA to generate the calibration signal.

7 EVALUATION OF MAGIC
We chose MLX90393 chip [5] as it is a representative MEMS mag-
netometer for different magnetic sensing apps [10, 13]. We built
a magnet tracking platform based on the open-source hardware
of MagX [13]. The platform consists of 8 magnetometers on two
parallel planes and a Bluetooth module for data communication.
The sensing array collects uncalibrated raw data and sends the data
via BLE to the computing unit, e.g., laptops or Raspberry Pi, for a
subsequent analysis. We set the sample rate of the magnetic field
sensor to 16𝐻𝑧. We use a Thinkpad X1 (with an Intel i5 chip) as the
computing unit. We recruited 3 participants for our experimental
evaluation.

We use the tracking accuracy as the metric. To collect the ground-
truth data of the moving trajectory, we used the Leap motion-
based platform, following the methods in MagX [13]. The tracking
accuracy of Leap motion is within 2.5 mm [47].

7.1 Hard-iron Calibration Performance
7.1.1 Performance of hard-iron calibration. In this experiment, we
first rotated the sensor array thoroughly (approximately for 30s)
without any nearby magnet. The thus-collected data was used for
the full-sphere calibration. Next, we extracted the first three seconds
of data as inadequate calibration data. Then, we placed the platform
at a stationary position for about one second and collected the data
(i.e., 16 data points) for MAGIC’s hard-iron calibration. Finally, we
moved the magnet and collected magnetometer readings, while
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Figure 6: Design and application of MAGIC’s soft-iron calibration hardware on magnetic system. A. The configurations of coil
and 3-D printed stand (cutaway and two axonometric views); B. The final assembly of MAGIC on MagX [13] system. Unit for the
length is millimeter (mm), the assembly ensures 𝜃 = 54.73◦, 𝜙 = 45◦.

Figure 7: The schematics for coils’ driving circuit.

recording the magnet’s actual trajectory using Leap Motion. This
step was repeated three times.

To eliminate the soft-iron effect on tracking performance, we
adopt the same soft-iron parameters, which are calculated with
full-sphere calibration data by the sphere-fitting algorithm, for all
the calibration methods. The hard-iron parameters of full-sphere
calibration and inadequate calibration are also calculated by the
sphere-fitting algorithm, with full-sphere calibration data and inad-
equate calibration data, respectively. The hard-iron parameters of
MAGIC are the average of "one-second data".

Fig. 9 a) shows the tracking performance of 3 different cali-
bration methods. The tracking error of inadequate calibration is
1.8𝑐𝑚 greater than the full calibration on average. MAGIC can cali-
brate the hard-iron effect of magnetometers in 1 second. Note that
MAGIC’s hard-iron calibration module even outperforms the lengthy
full-sphere movement. Specifically, the tracking accuracy is 9.16%,
13.19%, and 23.62% lower than the conventional method at 13 cm,
21 cm, and 27 cm distances, respectively.

Figure 8: Rectangular magnetic field controlled by our coil
circuit with varying current settings.

7.1.2 Impact of # of points for hard-iron calibration. How many
data points are sufficient for hard-iron calibration? To answer this
question, we randomly sampled one data point from 16 points as
MAGIC’s hard-iron calibration input. We then changed the number
of samples to examine the performance with different # of data
points. We repeated this process seven times.

Fig. 10 shows the result with the distance of 20–22 cm between
the magnet and the sensor array. The hard-iron calibration perfor-
mance converges with only 2–4 data points. Note that with just
one data point, MAGIC’s hard-iron calibration can still achieve a
sub-centimeter accuracy, indicating MAGIC’s effective and rapid
hard-iron calibration.

7.2 Soft-iron Calibration Performance.
7.2.1 Soft-iron settings. We installed our coil assembly on the
MagX platform as described in Sec. 6. To change the soft-iron
environment, we use soft-iron cylinders (i.e., ferrite rod [4, 18])
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(a) Performance with hard-iron calibration.

(b) Performance with soft-iron calibration.

Figure 9: MAGIC’s calibration performances.

Figure 10: Hard-iron calibration with varying # of sample
points. The dashed line shows the tracking result with all
hard-iron calibration points.

which are made of magnetically permeable materials, widely used
in electronic devices. This material generates an induced magnetic
field proportional to the ambient field. This induced field will distort
the nearby magnetic field, thus changing the soft-iron environment.
The cylinders are placed randomly near our tracking platform to
emulate the soft-iron disturbance.

7.2.2 The performance of soft-iron calibration. In this set of experi-
ments, we compare the performance of three different calibration
schemes in the presence of soft-iron disturbance. These calibration
methods are: (1) “Outdated calibration”: calibrate the sensor array
without any soft-iron disturbance; (2) “Soft-iron calibration”: cal-
ibrate the system with the MAGIC; and (3) “Updated calibration”:

calibrate the sensor array with the full-sphere method. We repeated
this process three times.

The tracking performance is shown in Fig. 9(b). We have two
key findings: (1) the updated calibration method outperforms the
outdated method; (2) despite the heavy soft-iron disturbance, MAGIC
outperforms the updated approaches in most cases. The first find-
ing indicates that in the presence of soft-iron disturbance, an un-
calibrated sensor has the worst performance. The second finding
suggests that MAGIC can achieve better performance than the full-
sphere calibration. Compared to the full-sphere method, at 19cm,
21cm, and 23cm distances, MAGIC exhibits 19.0%, 15.5%, and 17.7%
lower error rates, respectively. Note that MAGIC is worse than the
outdated calibration in near field. This is due to the approximation
error of the dipole model. The dipole model is applicable only when
the distance between the magnet and the sensor is much greater
than the radius of the sphere magnet, thus increasing the tracking
error when the magnet is in the near field of the platform.

7.3 Performance of Automatic Triggering
We now introduce how to choose the hyperparameters of the diver-
sity checker, and evaluate the accuracy of the triggering module.
The hyperparameter setting varies with application scenarios and
thus should be determined before using the auto-triggering scheme.

7.3.1 Tuning Hyperparameters. As mentioned in Sec. 5.1, we use
a diversity checker to collect data for baseline estimation. This
module has two hyperparameters: the threshold and the buffer size,
which should be chosen according to the specific usage scenario.
We will elaborate how to set the hyperparameters using the hand-
tracking app as an example.

We first log all the possible platform movements during normal
usage and employ a grid search to find the best combination of hy-
perparameters. During the data-collection process, the user wears
the sensing platform on his/her wrist to execute the hand-tracking
app. Note that wrist movements can be divided into elemental mo-
tions: horizontal, vertical, forward/backward, and rotation. The
users are instructed to perform 5 movements individually: figure
8-shaped and four elemental motions.

We repeat each gesture five times. Then, we apply different
combinations of the hyperparameters (i.e., distance threshold and
buffer size) defined in Sec. 5.1. We recruited another participant for
the experiment in a different lab setting. Our experimental results
are summarized in Fig. 11.
Threshold setting. The result are shown in Fig. 11(a) with violin
plot. We compare the average fitting error for all the gestures and
buffer sizes. The error decreases as the threshold gets larger and
converges after the threshold gets larger than 9𝜇𝑇 . The convergence
hints “sufficient” data for the sphere-fitting algorithm.
Buffer size.The experimental results are shown in Fig. 11(b). Specif-
ically, when the buffer is large, the error of all movements converges
below the sensor noise floor, However, a large buffer may lead to
a lengthy data collection phase. The fitting errors increase as the
buffer size decreases, thus degrading the detection accuracy.

Given the above findings, we test the impact of different gestures
by setting buff size and threshold to 300 and 9, respectively. By
applying our setting, the mean fitting error decreases to about 2𝜇𝑇
and the 75 percentile for each gesture are located below the sensor
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Figure 11: Comparison of baseline setting accuracy.

noise of MLX90393 magnetometer [5], indicating that t he error is
“small” for the system.

7.3.2 Performance. We collect two types of data for evaluation of
the detection algorithm. First, we collect the data without varying
soft/hard-iron disturbance. The participant was instructed to use
the sensing platform as usual after manually setting the baseline by
using 8-shaped movements. The platform is re-calibrated every 30
seconds to ensure no soft/hard-iron change in the detection stage.
Throughout this experiment, we collected 5 features as defined in
Sec. 5.2. All collected data were labeled as “no need to re-calibrate”.
The second experiment followed the same protocol. The major
difference is: we manually added the soft/hard-iron disturbance to
the platform after finishing the baseline setting. The collected data
in this experiment were labeled as “need re-calibration”.

We conducted experiments with three different placements and
randomly placed the small magnets within 20 cm of the platform.
We use three types of magnets: one magnet, two stacked magnets,
and three stacked magnets to emulate the magnetic disturbances
in the real-world. The performance of our proposed algorithm is
compared with the SVM algorithm [21]. We use grid search [42] to
find the optimal parameter set of SVM. As shown in Table 1(a), the
SVM can achieve 85% average F-1 score using radial basis function
(RBF) kernel with 𝐶 = 1000, 𝛾 = 0.001. Table 1(b) shows the perfor-
mance of our proposed method. Specifically, our method achieves a
75% average F-1 score, 10% less than SVM. This method only incurs
linear time complexity, i.e., 𝑂 (𝑁 ). It is more efficient than SVM,
which has a cubic time complexity, i.e., 𝑂 (𝑁 3) [8].

7.3.3 Periodic vs. Auto-triggering. The environmental magnetic
disturbances often incur arbitrary magnetic noises in tracking apps.

precision recall f1-score support
normal 0.90 0.78 0.84 272

soft/hard-iron 0.80 0.91 0.85 253

accuracy 0.84 525
macro avg 0.85 0.85 0.84 525

weighted avg 0.85 0.84 0.84 525
(a) SVM

precision recall f1-score support
normal 0.74 0.79 0.76 258

soft/hard-iron 0.76 0.71 0.74 252

accuracy 0.75 510
macro avg 0.75 0.75 0.75 510

weighted avg 0.75 0.75 0.75 510
(b) Proposed method

Table 1: Classification result of detection stage.

Interval auto-triggering 300 s 150 s 30 s
𝐸(J) 270.82 270.82 275.24 310.59
𝑂𝑐𝑐 3 3 6 30

Table 2: Overheads of periodic and auto triggering schemes.
𝐸 and 𝑂𝑐𝑐 denote the energy consumption and # occurrences
of calibrations, respectively.

Thus, periodic calibration with a fixed time interval is unsuitable
for real-world apps. Specifically, less frequent calibration would
leave the error unattended while high-frequency calibration can
incur unnecessary battery drain and computational overhead. We
empirically compare auto-triggering with periodic calibration.

In our experiments, a magnet is moved repetitively along a pre-
determined trajectory for 15 minutes. Specifically, the path is a
semi-circular arc with a radius of 12cm. The sensing platform is
placed at the center of the arc. After a 70s experiment, we place a
small magnet next to the sensing platform. This step introduces a
disturbance, a calibration is necessary for high-accuracy tracking.
After 760s of the experiment, we move the small magnet away. This
step removes the disturbance, thus needing another calibration
to adapt to the new environment. Without calibration, this vary-
ing magnetic environment would severely undermine the tracking
performance.

Our auto-triggering detects the disturbance and re-calibrates the
platform in a timely manner. The periodic method, on the other
hand, is to calibrate the system at a fixed interval. In our exper-
iments, three different periods — 30, 150, and 300 seconds — are
selected for emulating short, medium, and long intervals, respec-
tively. Fig. 13 shows our tracking results. Compared to the periodic
method, the auto-triggering method can help achieve accurate and
robust tracking performance. For the periodic method, a long time
interval would severely undermine the tracking accuracy. Specif-
ically, at a 300s interval, more than 40% of results show greater
than 3cm tracking error. On the other hand, frequent periodic cali-
brations induces unnecessary energy consumption. As shown in
Table 2, the periodic method with an interval of 30s consumes 15%
more energy than the auto-triggering.
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Need calib.? NO YES YES NO NO NO YES NO
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Figure 12: The detection result of the auto-triggering module. The unit for position errors is cm.

Figure 13: The CDF of periodic and auto triggering.𝑇 denotes
different intervals of periodic tracking.

7.4 Applicability of MAGIC
So far, we have evaluated the tracking performance by using the
analytical method, i.e., dipole model-based. MAGIC can improve mag-
netic tracking performance regardless of the choice of the tracking
algorithm. To corroborate this, we examine MAGIC’s performance
with other magnetic tracking algorithms, i.e., machine learning
(ML) and the Kalman filter (KF).

7.4.1 ML Method. First, we pre-process the data by demeaning
(i.e., subtracting the mean value) sensor readings. Then, we trained
an extra tree regressor model [22] with 200 estimators. We divide
data into 70% training and 30% test sets. In the training stage, we
adopt five-fold cross-validation [50]. The data used in the training
stage is calibrated using the full-sphere calibration method. In the
testing stage, we process the data with the full-sphere method and
MAGIC individually. As shown in Fig. 14, compared to the full-sphere
method, MAGIC achieves similar mean tracking error and smaller
variance. This result indicates MAGIC can improve the ML-based
method, thus extending its application scope.

7.4.2 Unscented Kalman Filter (UKF) method [11]. We have imple-
mented the magnetic tracking method based on UKF [45] which
models the tracking process as a KF process. The state (position,
orientation) of the magnet is used as the filter’s state, and the sensor
reading on each magnetometer is used as the filter’s observation.
The UKF tracking consists of two stages: prediction and update. In
the prediction stage, the filter predicts the state for the next times-
tamp by using the state-transition function (usually the equations
of motion). In the update stage, the filter adjusts its state predic-
tion according to the observation function, i.e., the sensor reading
equation (Eq. (1)). In our experiment, we use the first-order motion
equation as the state-transition function. We apply the initial state
of the filter as the ground truth and use the sensor noise as the
observation noise. We compare the tracking performance using

Figure 14: Performance of different tracking methods.

both full-sphere calibration method and MAGIC. As shown in Fig. 14,
MAGIC achieves a lower tracking error than the legacy method.

7.5 Energy Consumption
We now analyze MAGIC’s energy consumption. Our hard-iron cal-
ibration (Sec. 4.2) incurs minimal energy overhead thanks to its
linear time complexity design. In our soft-iron experiment, the cur-
rent, voltage, and power for driving our calibration circuit are 110
mA, 0.1 V, and 11 mW, respectively. Since the soft-iron calibration
only needs 1s, the energy consumption of each calibration is 0.011J.
We use a Raspberry Pi 4B as the computing platform and utilize
a power meter to measure energy consumption. Compared to the
tracking task, the extra energy consumption of the computing plat-
form of MAGIC is 0.097J. Note that the energy consumption of the
stand-alone tracking task is 2.53J in 1s. Hence, MAGIC’s calibration
incurs only 4.27% extra power overhead.

8 MAGIC IN ACTION
In what follows, we will first study how real-world disturbances
would impact MAGIC. Then, we use the free-form writing as a use-
case to demonstrate high-precision tracking even in the presence
of environmental noises.

8.1 Disturbance of COTS Devices
We investigate the impact of some common electronic devices —
such as the smart wristband, earbuds, wireless keyboard, wireless
mouse, etc. — on the sensing platform. We measure the impact of
these devices on tracking accuracy. First, we fixed the magnet at the
same position (i.e., 𝑥 = 12𝑐𝑚,𝑦 = 13𝑐𝑚, and 𝑧 = −0.1𝑐𝑚). Then, we
attached electronic devices near the platform to emulate real-world
usages. For each device, we recorded the error rate for positioning
the magnet. We also recorded the result (i.e., “Need Calibration” or
“No Calibration is Needed”) of the detection module. We conducted
an experiment with the parameter 𝑘3 = 3.5 and summarized the
results in Fig. 12. The auto-triggering scheme can automatically
detect if calibration is need in the presence of real-world distur-
bances. The actual tracking performance reflected the detection
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Figure 15: The tracking trajectory calibrated with the full-
sphere method and MAGIC.

result. Specifically, the averaged position errors of “No Calibration
is Needed” and “Need Calibration” conditions are 1.36 cm and 7.46
cm, respectively. The empirical results indicate that MAGIC can au-
tomatically control the error range of magnetic sensing app, thus
enhancing the app’s usability. Note that system designers can also
tune the hyperparameters to adopt their system for different apps.

8.2 Free-formWriting Experiment
We have built a free-form writing app to demonstrate how MAGIC
can help maintain the tracking accuracy in the presence of envi-
ronmental changes. In this experiment, we draw a predetermined
movement trajectory for the word “MobiCom” on a 2D surface.
The trajectory is located on the plane of 𝑧 = −0.1 cm from the
platform coordinate system. Before starting to write, we performed
the full-sphere calibration for 30s. Then, we put the platform on
the table and run MAGIC. After keeping the platform stationary for
5s to obtain the calibration data, we placed a magnet on the table.

The platform was turned on at the same time to set the trigger
parameters. Then, we moved the magnet slowly along the “Mobi-
Com” trajectory. For now, we show the tracking performance in
real time at 16Hz. The triggering results, i.e., “not need” or “NEED
CALIBRATION”, were shown at 2s intervals. If there is a “NEED
CALIBRATION” message, we move the magnet away from the
platform and then re-calibrate the system.

We emulate real-world disturbances in the app. Specifically, we
put the bone conduction headphones (Shokz OpenMove AS660)
near the platform, when the magnet moved between the letter “i”
and “C”. The auto-triggering module promptly showed the “NEED
CALIBRATION” message. Next, we moved the magnet away to re-
calibrate sensor readings. Finally, we resume the movement along
the predetermined path.

As shown in Fig. 16, the tracking trajectory was severely dis-
torted with the nearby headphones. For example, when the magnet
moves to the last letter "m", the un-calibrated tracking error is more
than 6 cm. MAGIC can correct the error, thus fixing the deformed
trajectory. The quantitative results of magnet movement trajectory
are plotted in Fig. 15. Specifically, after placing the headphones
near the platform, the magnet trajectory starts to deviate. Without
MAGIC, the tracking platform will not be able to notice the hard/soft-
iron disturbances. As a result, the tracking error grew rapidly. In
contrast, by detecting the disturbance and calibrating the platform,
MAGIC can reduce the tracking error by automatically triggering

Figure 16: Error in moving trajectory between MAGIC and full-
sphere calibration.

the calibration. This way, MAGIC can keep the error lower than 1
cm throughout the experiment.

8.3 Hand-writing Recognition
This experiment studies how MAGIC can improve a prevalent hand-
writing recognition task. For the letters, we used the single-stroke
alphabet, i.e., 20 lower case English letters as shown in Fig. 17. The
average size of each letter is about 8cm × 8cm. In the experiment,
we asked 3 volunteers to write all letters freely next to the track-
ing platform. During the writing process of each letter, we used
a permanent magnet to introduce disturbances. We compare the
performance of the sphere-fitting and MAGIC calibration methods,
respectively. For the sphere-fitting method, each participant per-
forms a one-time calibration procedure before starting the writing
session. In contrast, MAGIC calibration leverages the auto-triggering
scheme. Participants were instructed to write each letter six times
for each calibration method. We projected the 3D trajectory to the
X-Y plane for the handwriting recognition task. We trained the ML
classifier with the MNIST [16, 26] Letters dataset and ResNet [20].

Fig. 17 compares the magnetic handwriting calibrated by MAGIC
and sphere-fitting methods, respectively. As shown in Figs. 17 (a)
and (b), MAGIC helps calibrate the writing trajectory. For the sphere-
fitting approach, we observe a similar drifting issue discussed in
Sec. 8.2. Based on the classification results, i.e., Fig. 17 (c) and (d),
MAGIC can effectively reduce the effect of magnetic disturbance.
Overall, MAGIC and sphere-fitting methods achieve 90.3% and 12.8%
recognition accuracy, respectively. This empirical study demon-
strates MAGIC’s potential for improving essential applications.

9 RELATEDWORK
There are two major types of calibration: magnetometer-only and
IMU-aided calibration.

9.1 Magnetometer-only Calibration
The latest Android OS [6] employs the Kasa fitting algorithm [23]
for calibration. This is an efficient sphere-fitting algorithm that
calculates the center and the radius of a sphere by solving a system
of linear equations. It has a linear time complexity and is thus power-
efficient. However, it does not address the soft-iron effect. As shown
in Sec. 7.2, ignoring soft-iron disturbances can significantly degrade
the performance of high-accuracy magnetic sensing.
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Figure 17: (a) and (b) show the single-stroke alphabet magnetic writing, calibrated w/ MAGIC and sphere-fitting methods,
respectively. Confusion matrices in (c) and (d) present the performance of handwriting classification tasks.

Zhang et al. [49] proposed a calibration method using ellipsoid
fitting. This algorithm can derive both soft-iron effect on each axis
(3-DoF) and the hard-iron parameter. However, this approach only
considered the soft-iron on each axis, but failed to address the
soft-iron anomaly problem.
9.2 IMU-aided calibration
Papafotis et al. [33] presented a unified calibration methodology
for both magnetometer and motion sensors (e.g., gyroscope and
accelerometer). The soft/hard-iron parameters are calculated iter-
atively using the gradient descent method. It can achieve 6-DoF
soft-iron and hard-iron calibration.

Wu et al. [48] proposed a calibration algorithm based on IMU and
magnetometer. Instead of solving for the calibration parameter with
the collected data, they used an extended Kalman filter (EKF) to
update the estimation of the soft/hard-iron parameter dynamically.
They built a dynamic transition function between two consecu-
tive data according to rotation and acceleration. This method can
calculate 6-DoF soft-iron and hard-iron parameters.

There are three key findings. First, using IMU data can help
reduce the calibration effort, but incurs more energy cost. Second,
the user has to rotate the platform extensively in order to calibrate
the sensor. Third, all of the above algorithms are based on the
presumption that the sensor reading lies on a unit sphere, making
it susceptible to the soft-iron anomaly. Compared to the existing
methods, MAGIC is power-efficient, user-friendly (no need to rotate
the platform), and is resilient to the soft-iron anomaly.

10 DISCUSSIONS
MAGIC can be integrated with different form factors of magnetic
tracking platforms. For example, in Figs. 6 and 12, the sensing plat-
formwas adopted fromMagX [13], an open-sourcedmagnetic track-
ing system. Smaller tracking arrays can also use MAGIC. Specifically,

MAGIC can calibrate the soft-iron effect for the single-magnetometer
setting. For correcting the hard-iron effect, MAGIC needs the config-
uration of the environmental magnetic field. To solve Eq. (9) with
LM algorithm, MAGIC needs at least three magnetometers to fix
the hard-iron effect. Meeting this requirement can also enable the
detection phase of MAGIC’s auto-triggering.

The design of MAGIC can facilitate a smaller coil size. As shown
in Sec. 6, the soft-iron calibration requires a noticeable controlled
magnetic field. That is, one can further reduce the size as the coil
can provide a sufficient magnetic field, e.g., about 30 𝜇𝑇 as shown
in Fig. 8. For example, by enabling a built-in MEMS magnetic in-
ductor [25], one can construct an even smaller form factor.

11 CONCLUSION
We present MAGIC, a practical and easy-to-use calibration system for
magnetic sensing apps. MAGIC handles notorious soft- and hard-iron
disturbances with a novel approach. By using a lightweight auto-
triggering scheme, MAGIC can also enable end-to-end automatic
calibration. We have corroborated MAGIC’s performance in real-
world apps with a series of empirical studies. Specifically, MAGIC’s
hard- and soft-iron calibration is shown to outperform state-of-the-
arts with much less user involvement. MAGIC is expected to pave
the way of real-world apps of magnetic sensing technology.
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