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Figure 1: MagX provides a wearable and untethered sensing module, with customizable array sizes and versatile form factors
by using passive magnets. (A) MagXwith three different sensor array sizes; (B) three form factors with different magnet config-
urations. Both images are on the same scale.

ABSTRACT
Accurate tracking of the hands and fingers allows users to employ
natural gestures in various interactive applications. Hand tracking
also supports health applications, such as monitoring face-touching,
a common vector for infectious disease. However, for both types
of applications, the utility of hand tracking is often limited by the
impracticality of bulky tethered systems (e.g., instrumented gloves)
or inherent limitations (e.g., Line of Sight or privacy concerns with
vision-based systems). These limitations have severely restricted
the adoption of hand tracking in real-world applications.We present
MagX, a fully untethered on-body hand tracking system utilizing
passive magnets and a novel magnetic sensing platform. Since
passive magnets require no maintenance, they can be worn on the
hands indefinitely, and only the sensor board needs recharging,
akin to a smartwatch.

We used MagX to conduct a series of experiments, finding a wear-
able sensing array can achieve millimeter-accurate 5 DoF tracking
of two magnets independently. For example, at 11 𝑐𝑚 distance, a
6𝑐𝑚 × 6𝑐𝑚 sensing array can achieve positional and orientational
errors of 0.76 𝑐𝑚 and 0.11 𝑟𝑎𝑑 . At 21 𝑐𝑚 distance, the tracking errors
are 2.65 𝑐𝑚 and 0.41 𝑟𝑎𝑑 . MagX can leverage larger sensor arrays for
improved long-distance tracking, e.g., a 9.8𝑐𝑚 × 9.8𝑐𝑚 array can
achieve 2.62 𝑐𝑚 and 0.55 𝑟𝑎𝑑 tracking performance on two magnets
at 27 𝑐𝑚 distance. The robust performance can facilitate ubiquitous
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adoption of magnetic tracking in various applications. Finally, MagX
can perform all compute locally and only requires 0.38W total (
220𝑚𝑊 on the sensor platform plus 159𝑚𝑊 on the computing unit)
to perform real-time tracking, offering “all day” fully untethered
operation on a typical smartwatch-sized battery.
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1 INTRODUCTION
As one of the most expressive parts of the body, the hands offer a
natural way to interact with machines and the surrounding environ-
ment. Precise hand tracking technology helps boost user experience
by improving the immersion of the interaction, which is critical
to VR/AR environments. Furthermore, hand gestures are usually
relevant to mental stress (e.g., subconscious hair pulling, lip picking,
fingernail chewing) and physical well-being (hand-washing and
face-touching), especially in the COVID-19 pandemic era.

Many prior studies have gravitated towards using cameras and/or
Inertial Measurement Units (IMUs) as sensors to track users’ hands.
As the most prevailing solution for hand tracking, the camera-based
approaches have enabled high-precision hand segmentation and
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tracking. However, the line-of-sight (LoS) requirement, high en-
ergy/computation costs, and privacy concerns hamper the adoption
of these methods for mobile applications. IMUs offer a solution
to these issues. Specifically, they can be placed in any strategic
location on the human body to allow direct query of the state of
the deployed position. They are not reliant on LoS and do not pose
a privacy issue in the same manner as cameras. However, their
fundamental limitation is the drifting problem, where the estimated
position accumulates tracking error over time. Furthermore, fine-
grained hand pose tracking requires multiple IMUs on the hand.
Running all units simultaneously and continuously makes it too
power-hungry to support all-day usage on a smartwatch-sized bat-
tery. These listed issues ultimately limit the feasibility of these
approaches in the real world.

We present MagX, a fully wearable and untethered on-body hand
tracking system utilizing passive magnets and a novel magnetic
sensing platform. The nature of magnetic fields allows for LoS re-
silient and privacy-preserving sensing. Since fixed magnets require
no maintenance, they can be worn on hands indefinitely, and only
the sensor board needs recharging, akin to a smartwatch. To build
MagX, we focus on achieving three fundamental features:

• Robust.The tracking performance needs to be robust against
fast-changing environmental noise and various hand poses;
• High-efficiency. MagX should employ energy-efficient sens-
ing and computational approaches to perform fully inte-
grated on-body sensing;
• Low-cost & wearability. MagX should have low manufac-
turing cost and high wearability.

Achieving robust magnetic tracking is challenging due to the
speed and variety of hand movements and varying environmental
magnetic noise. Specifically, a hand-worn magnet’s orientation (i.e.,
the magnetic pole) may change quickly, inducing a highly-dynamic
spatial distribution of the magnetic flux density. Different envi-
ronments introduce unique background magnetic field conditions,
including Earth’s magnetic field and hard/soft iron effects from
nearby metallic objects. Therefore, the magnetic field of the tar-
geted magnets can easily be overpowered by the aforementioned
noises, rendering wearable passive magnet tracking a challenging
task. To tackle this problem, we track the 5 DoF information of
magnet(s) by using the Levenberg–Marquardt (LM) algorithm. The
LM-based method derives two types of essential information: the
targeted magnet’s status (i.e., spatial, angular, and magnet moment)
and the background magnetic field. This enriched awareness of the
background information allows MagX to decouple system noise from
environmental changes, thus improving the system’s robustness.

Building a fully-integrated wearable magnetic tracking platform
presents additional challenges as existing approaches usually em-
ploy (1) a bulky frontend for collecting magnetic field data, and
(2) a tethered backend (e.g., a laptop) to provide unbounded com-
putational resources. In contrast, MagX is a fully wearable and un-
tethered system, with a novel magnetometer sensor array design
pipeline aided by simulation and Particle Swam Optimization (PSO)
algorithm. To validate the real-world performance of the designed
platform, we propose a new benchmarking tool that leverages a
commodity off-the-shelf (COTS) LeapMotion infrared camera. Com-
pared to expensive, conventional motion capture (MoCap) systems,

our platform is low-cost and easy-to-use without compromising
accuracy. We streamline the above design steps into a computer-
aided magnetometer array design (CAMAD) pipeline, which will
be detailed in Sec. 4.

To further improve the efficiency of MagX, we conduct in-depth
code optimization of the tracking algorithm, achieving 5 DoF track-
ing on mobile platforms, e.g., Raspberry Pi 4B. Our experimental
results indicate MagX is able to accurately track multiple magnets
in real-time. Specifically, a 6𝑐𝑚 × 6𝑐𝑚 (of the XY-plane) sensing
array can achieve positional and orientational errors of 0.93 𝑐𝑚 and
0.09 𝑟𝑎𝑑 on one magnet; 0.76 𝑐𝑚 and 0.11 𝑟𝑎𝑑 on two magnets, at
11 𝑐𝑚 distance. Using the same array, MagX retains robust tracking
at longer distances: 2.22 𝑐𝑚 and 0.16 𝑟𝑎𝑑 on one magnet and 2.65
𝑐𝑚 and 0.41 𝑟𝑎𝑑 on two magnets at 21 𝑐𝑚 away. MagX can leverage
larger arrays for improved long-distance tracking: a 9.8𝑐𝑚 × 9.8𝑐𝑚
array can achieve positional and orientational errors of 0.51 𝑐𝑚 and
0.04 𝑟𝑎𝑑 on one magnet; 0.46 𝑐𝑚 and 0.10 𝑟𝑎𝑑 on two magnets, at
11 𝑐𝑚. At 27 𝑐𝑚 distance, the same array can achieve 1.36 𝑐𝑚 and
0.14 𝑟𝑎𝑑 on one magnet; 2.62 𝑐𝑚 and 0.55 𝑟𝑎𝑑 on two magnets.

MagX is also highly wearable with low energy consumption. Re-
sults show that real-time data collection and tracking incur extra
power drain 0.65𝑊 on a Raspberry Pi 4B or 0.15𝑊 on an emulated
Raspberry Pi Zero, plus 0.22𝑊 power consumption of the sensor
array itself. Compared to the energy drain of other power-hungry
hand tracking systems, MagX’s low energy consumption enables its
“all day” operation on off-the-shelf smartwatch-sized batteries. See
Sec. 5 for Detailed results.

MagX’s mobile and untethered feature can enable a wide range
of real-world applications. This paper focuses on the evaluation of
MagX’s usability in three key applications, i.e., subconscious behav-
ior monitoring, enriched user interaction, and at-home healthcare.
Specifically, we present and evaluate three representative applica-
tions, including face touching detection, controller-free AR interac-
tion, and usage in precision medicine such as endocapsule tracking.
These applications will be elaborated in Sec. 6.

To promote further research & development for these applica-
tions (e.g., face touching detection for improving personal hygiene
in the pandemic era), we have made all source files (e.g., code
and Gerber file) of MagX publicly available at https://github.com/
dychen24/magx. This paper makes the following contributions:

(1) Introduction of MagX, the first wearable, untethered hands
tracking platform based on passive magnets;

(2) A computer-assisted magnetometer array design pipeline
for fast prototyping of magnetic tracking hardware;

(3) A series of experimental studies to demonstrate the weara-
bility and usability of MagX in real-world settings;

(4) A comprehensive study of potential real-world applications
enabled by MagX.

2 RELATEDWORK
We first contextualize MagX relative to general hand tracking ap-
proaches. Specifically, we include both gesture-detection approaches
(which can track hands’ activity but not their position) and more
fine-grained pose-estimation approaches (which can track the lo-
cation of key points on the hands). MagX is situated closer to the
latter approach. We then examine existing magnetic tracking works,
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including inventions using electromagnets, passive magnets. For
reference, MagX leverages multiple passive magnets.

2.1 Hand Tracking Applications
Motion-based. The convenience and ubiquity of IMUs in smart-
watches have led to their extensive use in hand and arm tracking.
The first class of applications is gesture applications, where a spe-
cific hand-based action is classified. More recent work proposes a
smartwatch-based system for detecting 25 hand activities and pro-
vides a thorough survey of IMU-based hand gesture detection [21].
In light of the recent COVID-19 crisis, face touching has become a
particularly pertinent hand gesture for detection and prevention.
For example, ImmuTouch [9] leverages the IMU sensors to detect
face touching events. Its functionality demands a customized elec-
tronic wrist band and a training phase. Similarly, Jalapeno [10] is a
Fitbit-based app for face touching detection.

A more challenging class of applications is position-estimation
applications, where the precise positions of both hands are com-
puted. This is particularly challenging using an IMU, as small er-
rors compound over time, leading to large positional drift. Arm-
Track [33] and MUSE [32] both use the IMUs in a smartwatch for
tracking the user’s arm movement and demonstrate state-of-the-art
drift mitigation methods. RisQ [27] uses the IMU sensor to estimate
the position of the wrist to detect smoking and eating behavior.

Compared to existing works, MagX demonstrates comparable
wearability and flexibility.Specifically, users can customize the
placement of the MagX’s tracker and magnet(s) for different use
cases, including tracking both hands at the same time with one
magnet on each hand. While prior works only require a single
point of instrumentation (e.g., smartwatches and Fitbit wristband),
they subsequently can only track the hand that wears the device, a
fundamental limitation that may severely undermine their usability.
Furthermore, these approaches often employ supervised learning
methods, which require off-smartwatch compute. MagX’s modest
compute requirements suggest future on-smartwatch viability.
Vision-based. A popular alternative to IMU approaches is vision-
based approach [19, 31, 43], which use cameras to detect fine-
grained hand pose and build gesture models upon the location of
the fingers/hands. For example, Digits [19] uses an IR camera/laser
combination to find the location of the fingers and uses a custom
kinematic model to drive interactive applications. While vision ap-
proaches are robust against positional drift issues, they present pri-
vacy, power, and compute constraints. MagX is not privacy-intrusive
and able to achieve NLOS tracking — a fundamental limitation for
vision-based tracking schemes.
RF-based. An emerging approach for hand tracking relies on radio
frequency (RF). By analyzing the reflected RF signal using radar
techniques, movement information can be retrieved. For example,
Soli [23] used 60 GHz RF to achieve high-resolution hand pose
recognition. However, high-frequency RF signal (e.g., millimeter-
wave) can also suffer from NLOS issues, and its power requirements
may not be appropriate for continuous battery usage. Conversely,
approaches using lower frequencies have significantly less power
draw (or are battery-free in the case of RFID [39]) but suffer from sig-
nificant multipath issues, posing challenges in fine-grained hands
tracking applications.

Other trackingmodalities. SaveFace [29] proposed amicrophone
method for detecting face touching events. It leveraged COTS smart-
phonemicrophone and radar techniques to achieve the goal. Despite
its low-cost feature, this approach requires extensive training and
only supports binary classification as it does not track the hands
outside certain proximity to the face. FingerIO [25] built an ultra-
sound radar for tracking 2D finger movement by using a COTS
smartphone. However, it tracks finger movement relative to the
hands, but not the hand’s position relative to the body.

2.2 Magnetic Tracking/positioning
Sensing magnetic induction. One magnetic tracking approach
is sensing the current induced on a coil by a magnet. Compared to
other magnetic tracking approaches, inductionmethods have partic-
ularly high tracking accuracy and long sensing range. Aura [42] uses
electromagnetic induction to achieve fine-grained 3-space tracking
of a controller in VR environments. Researchers also [16] simulated
electromagnetic induction-based motion tracking by wrapping coils
on the human body. Recently, researchers also proposed magnetic
induction as a new IoT device tracking schema [34]. However, ul-
timately, these approaches require an energy-intensive magnetic
field generator as a spatial anchor and relatively large induction
coil on the object being tracked, making them unsuitable for certain
applications or form factors.
Tracking electromagnetic field. Another approach is measuring
changes in magnetic fields to localize electromagnets. Finexus [14]
uses electromagnets for tracking finger movements in close ranges
(e.g., within 12 𝑐𝑚). Each electromagnet generates an oscillating
magnetic field at specific frequencies, which is then picked up by
magnetometers. Electromagnets allow modulation of the magnetic
field, allowing richer channel information. However, this approach
requires users to wear powered electromagnets, thus reducing wear-
ability and impacting battery-powered applications.
Tracking passive magnet. Most similar to MagX are passive mag-
net approaches, where magnetometers are used to track passive
magnets. Recently, researchers proposed an LM-based method [35]
that tracks the position of passive magnets across short distances.
However, this approach requires a large array of 16 magnetometers,
which may undermine its wearability in the real-world. TRing [44]
uses the magnetometer in a ring with a passive magnet in embed-
ded objects for interactive object applications. However, it does not
sense the magnet orientation and can only track a single magnet
within 5 𝑐𝑚. [17] explored magnetic tracking in the driving con-
text. Specifically, it used a commodity smartwatch to sense one
passive magnet worn on the other wrist. Instead of tracking the
exact position of the magnet, it proposed a machine-learning-based
approach to recognize seven pre-defined hand positions based on
the magnetometer readings. Furthermore, it focused solely on the
recognition of hand position in the driving context. Therefore, its
usage scenario and proposed technology are different from ours.

3 ALGORITHM DESIGN OF MAGX
Fig. 2 depicts the system overview of MagX. Specifically, the user
needs to wear the magnet(s) and MagX’s sensor array (as shown
in Fig. 1). The design of our sensor array will be elaborated in
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Figure 2: System overview of MagX.

Sec. 4. During operation, the sensor array sends the raw magne-
tometer data (i.e., 3-axis data from eight sensor elements) to the
mobile processing unit. As we will elaborate in Sec. 3.2, MagX first
determines the presence of a target magnet(s). This is an important
step for achieving robust tracking performance. Then, a LM-based
algorithm will be executed for tracking the magnet(s). Note that
MagX optimizes the tracking algorithm to enable real-time and light-
weight data processing.

3.1 Tracking Algorithm
MagX tracks the movement of magnet(s) by sensing the varying
spatial distribution of magnetic field, which can be modeled by
using the dipole model [13]. Detailed mathematical modeling of
the single-dipole magnet is described by the following formula:

®𝐵 =
𝜇0
4𝜋 (

3( ®𝑚 · ®𝑟 )®𝑟
|®𝑟 |5

− ®𝑚
|®𝑟 |3
) (1)

where the ®𝑟 is the vector pointing from the magnet to the observa-
tion point; ®𝑚 is the magnet moment vector.

Hence, to track one magnet, we need to solve for six parameters,
i.e., 𝑥,𝑦, 𝑧,𝑚𝑥 ,𝑚𝑦,𝑚𝑧 , where (𝑥,𝑦, 𝑧) and (𝑚𝑥 ,𝑚𝑦,𝑚𝑧) are ®𝑟 and
®𝑚, respectively. Since the magnitude of the magnetic moment is
a constant, we can describe the magnet moment in a spherical
coordinate system.

®𝑚 =𝑚
©«

sin𝜃 cos𝜙
sin𝜃 sin𝜙

cos𝜃

ª®¬ (2)

Based on this transaction, the goal of our algorithm is to track six
parameters (i.e., 𝑥 , 𝑦, 𝑧,𝑚, 𝜃 , and 𝜙).

To accurately track the magnet, we need to differentiate the tar-
geted magnet’s field from the spatially uniform background mag-
netic field, e.g., the Earth magnetic field. This background magnetic
field cannot be ignored, since the magnetic field strength of a dipole
degrades at the power of three with respect to the distance [13].
We conduct an experiment study with four N40 grade spherical
neodymium magnets with different diameters. Specifically, the cor-
responding diameters for magnet 1, 2, 3, and 4 are are 20 mm, 15
mm, 10 mm, and 4 mm, respectively. According to our measurement
shown in Fig. 3, the magnetic field strength of the strongest magnet
(i.e., magnet 1) used in our experiment degrades to the background
field strength1 at approximately 20 𝑐𝑚. Thus, to accurately model
the system, the magnet field observed on the 𝑖-th sensor should be
represented as the linear combination of the magnet field generated

1The Earth magnetic field ranges from 20 to 60𝜇𝑇 [3]

Figure 3:Magnetic field strength of various readily-available
magnets across distances

by each magnet and the background magnetic field:
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𝑗=𝑀∑
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where ®𝑟𝑖 𝑗 is the vector pointing from the 𝑗𝑡ℎ magnet to the 𝑖𝑡ℎ
sensor. In order to track the magnet using the sensor readings in a
reliable way, MagX should also interpret the background magnetic
field, making it 3+6𝑛 parameters required in total to track 𝑛 magnet.

For each sensor, we can establish three equations with respect
to three different axes. Noted that it’s a combination of nonlinear
equations that are hard to find the numerical solution. In order
to solve these equations, we use the Levenberg-Marquardt (LM)
algorithm [24]. By providing the initial guess and the Jacobian
matrix at that point, the LM algorithm can find the local minimum
in an iterative fashion.

Considering the environmental noises have a significant impact
on the tracking performance, we take two countermeasures: a slid-
ing window filter and a Kalman filter [41]. A sliding window of
width 3 is applied to the sensor readings to suppress abnormal
high-frequency noises. The Kalman filter is used on the output of
the LM algorithm for smoothing the tracking path and providing a
feasible guess for the initialization of the next data point.

3.2 The Diminishing Magnets Problem
An algorithm for determining the existence of magnet(s) within
the sensing range is necessary, as the magnetic strength of a dipole
degrades at the power of three with respect to the distance [13] —
a magnet placed at far-field would be too subtle to be sensed by a
magnetometer, making it power-consuming and inaccurate to track
far-field magnet(s). We defined this issue as the diminishing magnets
problem. Thus, we would like to trigger the tracking algorithm only
if there is at least one magnet within a predetermined sensing range.

Due to the high complexity of the analytical model of the mag-
netic field, we investigated a data-driven solution. However, con-
ducting a thorough study of the real-world magnetic data is a chal-
lenging task, since we could not cover all possible data points in
the sensing range. Therefore, a simulation-driven method is pro-
posed. The simulation system, which will be further discussed in
Sec. 4.1.2, is used to generate sensor readings under the condition
that two magnets are placed at random position and orientation.
During simulation, the magnet moment and the strength of the
earth magnetic field are constant.
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Figure 4: The overview of CAMAD design pipeline
We label the sensor readings into the following two categories:

zero vs. one/two magnet(s) within the sensing range. The sens-
ing range is chosen according to the tracking performance (the
maximum distance where the tracking error is within 2 𝑐𝑚). We
simulated 3 × 104 data and labeled them accordingly.

The simulated data is fed into a SVM classifier using the radial
basis function (RBF) kernel and parameters𝐶 = 3000, 𝛾 = 1.0×10−6
to identify the existence of the magnet(s) in the sensing range. Ta-
ble 1 shows the precision, recall, and F1-score of the SVM classifier
on the test set. The average F1-score is above 90%.

Precision Recall F1-score Support
0 0.98 0.81 0.89 10000
1 or 2 0.91 0.99 0.95 20000

Table 1: SVM classification results to determine the presence
of a tracking magnet.

By applying this algorithm, MagX will not invoke the LM algo-
rithm to track the magnet unless the magnet is detected within the
sensing ranging. Therefore, MagX can switch between tracking and
idling mode to provide an energy-efficient performance.

4 HARDWARE DESIGN OF MAGX
Building the hardware of a novel magnetic sensing array could be
a daunting task, as the design-manufacture-debug iteration can
be time-consuming and labor-intensive. Our hardware design is
guided by the following key design principles:

(1) Sensing accuracy. Tracking magnet(s) accurately is the fun-
damental requirement of our design.

(2) Interactive range. MagX should support a sufficient sensing
range for real-world hand tracking applications.

(3) Minimize the energy and manufacturing cost. A large
number of magnetometer sensors and high manufacturing
cost would significantly limit the usability of MagX.

We streamline the above design principles and propose a Computer-
aided magnetometer array design (CAMAD) pipeline, thus achiev-
ing high sensing accuracy with customizable interactive range and
minimal costs.

4.1 CAMAD Pipeline Design
4.1.1 Conceptual layout design. Tracking two magnets includes
identifying 15 DoFs of information. Since each magnetometer pro-
vides information on 3 DoFs, in theory, five magnetometers are
needed. To make the system more robust and accurate while limit-
ing power drain, eight magnetometers would be used in our system.

We proposed a two-layer layout for these eight sensors. On one
hand, splitting sensors on multiple layers can maximize the distance
between each sensor while minimizing the projection of the array

on any plane. In other words, this design can make the array smaller
without sacrificing the distance between sensors. On the other hand,
it would be technically easier and cheaper to produce a PCB board
with two layers compared to three or more layers. Besides, a multi-
layer PCB uses pin headers to communicate between layers. The
number of pin headers increases with more layers, and using too
many pin headers may introduce noise to data transmission. To
this end, we choose the two-layer layout.

After deciding on a two-layer layout, the distance between the
upper and lower layer needs to be determined. This involves balanc-
ing between sensor distance, user experience, and market availabil-
ity. Naturally, the distance between layers should be large so that
spatial information gathered by the sensors will be more diverse.
However, a large distance between layers might make the device
too bulky to wear. Furthermore, the pin headers connecting the
upper and lower layer should be commercially available. To this
end, the upper-lower layer distance is designed to be 3.2 𝑐𝑚.

Based on these premises, we propose the design shown in Fig. 5(b).
Sensors on the lower and upper layer are placed on the four vertices
of 2 squares. The lower layer square and the upper layer square are
staggered so that the diagonal line of the upper square is parallel
to the central axis of the lower square. Not only does this design
maximize the distance between different sensors, the design can
also minimize potential shielding issues caused by large copper
PCB boards by hollowing out unused parts of the PCB boards.

To validate that our design can achieve the best accuracy among
all sensor layouts designed based on the same constraints (i.e., eight
sensors, two-layer layout, the distance between layers being 3.2 cm),
we use the following procedures to find one of the optimal layouts
in order to compare the performance of our proposed layout with
the theoretical upper bound.

4.1.2 Simulation settings. The premise of finding an optimal lay-
out with the aid of a computer is simulating the magnetic field of
a magnet and the corresponding measurement. In the simulation
process, we use the dipole model and assume there is no interfer-
ence between two magnets. Therefore, the magnetic field strength
collected by the 𝑖𝑡ℎ sensor can be depicted as the linear combination
of the magnet field as modeled in Eq. (3).

We proposed a three-step simulation process: simulating the
ideal sensor readings, adding sensor noise, and quantifying sensor
readings. First, we compute the theoretical magnetometer readings
(i.e., without noises) given the magnet parameters: position, ori-
entation, magnet moment, and the sensor layout. The reading is
computed by using Eqs. (1) and (2). The background magnetic field
strength in the equation is set to 50𝜇𝑇 by looking up the local Earth
magnetic field strength. The second step is to add Gaussian noise
according to the datasheet of the magnetometer model. In this pa-
per, we select MLX90393 [4], a popular COTS magnetometer. At the
sample rate of 17Hz, the standard deviations of the measurement
noises on each axis are (0.6, 0.6, 1.1)𝜇𝑇 and the least significant
bit is 0.15𝜇𝑇 . Finally, the sensor reading is quantified according to
the sensor resolution (indicated in the datasheet). The simulation
result is time-series magnetometer readings corresponding to the
magnet’s moving trajectory. We implemented the simulation pro-
cess with NumPy. Sec. 5.2.3 compares our simulation results with
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experimental results, validating the simulation (as shown in Fig. 10.

4.1.3 Particle swarm optimization (PSO) Algorithm. The simula-
tion data is used to evaluate the performance of the sensor array.
Naturally, our goal is to find the layout that would have the best
tracking accuracy. However, finding the optimal layout is an NP-
hard problem as the placement combination of magnetic sensors is
uncountable. The gradient-based optimization would also fall short
as LM algorithm is indifferentiable. The above observations lead
us to PSO algorithm [18], a non-gradient optimization method. We
elaborate the algorithm for finding the optimal layout as follows.
First, we randomly initialize 500 possible layouts (given 8 sensors
placed on two parallel planes), each layout is denoted as a particle in
the PSO algorithm. Each particle is a 24-dimensional array for rep-
resenting the 3D positions of 8 magnetometers. Our goal is to find
the overall optimal layout from 500 candidates. In each iteration,
every particle updates its position and velocity by using the PSO
update rule (as shown in Eq. (4)). The objective function is the track-
ing performance of one moving magnet within a usage-dependent
range. For example, in the face touching detection application, the
distance between the sensory board (as shown in Fig. 12) and the
boundary of the user’s face is within 30cm. Then, within the sensing
range, we uniformly sample data points to evaluate the layout’s
tracking performance. After each iteration, each particle updates
its best layout and the corresponding objective function value. The
global optimal result is also updated. Finally, the algorithm stops
at 1000 iterations and the resulting global best solution is used as
the optimal layout. The overall pipeline to find the optimal layout
is written using NumPy. We implemented the LM algorithm for
tracking magnet(s) in C++ with Ceres-solver library.

We define that each particle contains the position information of
all 𝑛 sensors, rendering each particle an array of size 3𝑛. Based on
the constraints in Sec. 4.1.1, we specify that these sensors should be
placed on two parallel planes and should be placed within a square
on each plane. The distance between the upper and lower plane
should be 3.2 cm. At each iteration, each sensor in the particle will
update its speed and position according to Eq. (4):{

𝑉 𝑡
𝑖
= 𝜔𝑉 𝑡−1

𝑖
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𝑡−1
𝑖
) + 𝑐2𝑟2 (𝑟𝑡−1𝑔𝑙𝑜𝑏𝑎𝑙

− 𝑟𝑡−1
𝑖
)

𝑟𝑡
𝑖
= 𝑟𝑡−1

𝑖
+𝑉 𝑡

𝑖

(4)
where 𝜔 , 𝑐1 ,and 𝑐2 are hyper-parameters; 𝑟1 and 𝑟2 are random
numbers drawn from the uniform distribution between 0 and 1.

However, since the 𝑛 sensors are interchangeable, the optimal
solution may have different expressions and can be misleading.
As a result, at each iteration, we sort the sensors based on their
coordinates to avoid the duality of the optimal solution.

4.1.4 Objective function. The most intuitive idea to evaluate the
performance of the sensor array is to compare the average tracking
error of the LM algorithm with a pre-defined route. But this method
has two drawbacks: (1) the tracking error will be affected by the ran-
dom noises; (2) the moving route may not reveal the overall tracking
performance of the sensor array. To overcome these drawbacks, we
use an objective function based on unscented transformation [37].
The unscented transformation is used to evaluate the effect of ap-
plying a nonlinear transformation to a probability distribution. The

(a) Optimal Layout. (b) Proposed layout.

(c) Simulation Tracking Error.

Figure 5: Comparison of simulated tracking errors for the
optimal and proposed sensory array layouts.

key idea is to select some points, denoted as the Σ points, in the
original distribution, pass them through the nonlinear function and
evaluate the mean and variance of the resulting distribution. The
constraints for choosing the Σ are listed in Eq. (5).

1 =
∑
𝑖

𝑤𝑚
𝑖 , 1 =

∑
𝑖

𝑤𝑐
𝑖 , 𝜇 =

∑
𝑖

𝑤𝑚
𝑖 𝑓 (X𝑖 )

Σ =
∑
𝑖

𝑤𝑐
𝑖 (𝑓 (X)𝑖 − 𝜇) (𝑓 (X)𝑖 − 𝜇)

T
(5)

Each Σ point converts to valueY through the nonlinear transfor-
mation. The mean value and variance of the resulting distribution
can be calculated using Eq. (5).

𝜇 =

2𝑛∑
𝑖=0

𝑤𝑚
𝑖 Y𝑖 , Σ =

2𝑛∑
𝑖=0

𝑤𝑐
𝑖 (Y𝑖 − 𝜇) (Y𝑖 − 𝜇)

T (6)

Since the LM algorithm is a non-linear function that maps the
sensor reading to the magnet position, we use unscented trans-
formation to calculate the uncertainty of the tracking result. The
sensor reading is modeled as a normal distribution with ideal sensor
reading as mean and measurement noise as variance. By applying
the unscented transformation to the sensor reading distribution,
we can calculate the mean value and variance of the magnet po-
sition. Using the norm of the eigenvalues of the magnet position
co-variance matrix, we can measure the uncertainty of the tracking
result in a deterministic way.

During the simulation process, we uniformly sample points dis-
tributed between 10 𝑐𝑚 and 30 𝑐𝑚 from the center of the array. We
use the mean value of the tracking uncertainty of these points as
the objective function.
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Figure 6: The MagX sensor array circuit schematic.

4.1.5 Simulation result. The resulting layout is listed in Fig. 5(a).
Compared to our proposed layout in Sec. 4.1.1, the optimal layout
has five instead of four sensors on the upper layer, and the sensors
are arranged asymmetrically with two of the five sensors closely al-
located. This makes it more challenging to build the optimal layout.
The comparison between our proposed layout and the optimal one
in Fig. 5(c) shows that the tracking performance of our layout is
comparable to the optimal one at varying distance. Thus, by consid-
ering both the manufacturing cost and the tracking performance,
we conclude that the layout proposed in Sec. 4.1.1 is feasible.

4.2 Hardware Configuration
Based on the layout proposed in Sec. 4.1.1, we manufactured 3
different sensor arrays of size 6 × 6 cm, 8 × 8 𝑐𝑚 and 9.8 × 9.8 cm.
Here 𝑎 ×𝑎 𝑐𝑚 refers to the size of the square formed by the sensors
on the lower layer. The distance between the upper and lower layer
is 3.2 cm. The sensor arrays are shown in Fig. 1, and the circuit
schematic is shown in Fig. 6.

4.2.1 Magnetometer setting. MLX90393 magnetometers are used
in our current system.We choose this specific model as it has a wide
dynamic range (i.e., 5 − 50𝑚𝑇 ) compared to other commercially
available products. A magnetometer with narrower dynamic range
may get saturated in our user case with strong magnets placed at
near-field.

To minimize the noise and maximize the resolution of the mea-
surement on the premise of smooth user interaction with high
frame rate, we tune our MLX90393 chips by setting the following
parameters: gain setting (GAIN_SEL), sensor reading resolution
(RES), sampling ration (OSR), and digital filter (DIG_FILT) to 7, 0, 3,
and 5, respectively.

Gathered magnetic field measurements are sent to an Adafruit
Feather nRF52832 before being relayed to the computing unit via
Bluetooth Low Energy (BLE) channel.

The Adafruit Feather nRF52832 communicates with the magne-
tometers via SPI protocol at 2 MHz clock frequency. Compared to
I2C protocol, SPI enables faster communication and thus more syn-
chronized reading between multiple magnetometers. Under these
configurations, the system can achieve an overall sample rate of 17
𝐻𝑧, with Z-axis noise lower than 1.1 𝑢𝑇 and XY-axis noise lower
than 0.6 𝑢𝑇 .

4.2.2 Magnetometer calibration. The reading of magnetometers
can be easily polluted by hard-/soft-iron effect. Thus, we calibrate
the magnetometers against Earth’s magnetic field following the
standard procedure. We first keep the magnetometers array far

(a) Before calibration. (b) After calibration.

Figure 7: Scatter plot of magnetometer measurements be-
fore and after calibration. Each sphere of a distinct color rep-
resents the reading of a magnetometer.

away from any magnet in the environment, then gather the reading
of the magnetometers while randomly rotating the array. The raw
data from the magnetometers have a different scale and bias, as
shown in Fig. 7(a). These errors are then removed using the standard
calibration algorithm [28]. The sensory array would be ready for
tracking when all magnetometers perform uniformly, as shown in
Fig. 7(b). Since the intrinsic hard and soft-iron effects of the sensing
platform were stable during operation, we only need to calibrate
once before conducting a series of experiments/usages.

5 EVALUATION OF MAGX

5.1 Implementation Details of MagX
In our proposed tracking algorithm, the most time-consuming part
is the LM algorithm. We first validate the algorithm by implement-
ing the code using SciPy [38] in Python. The SciPy implementation
achieves a frame rate of 20 FPS on a MacBook Pro (15" screen, 2018,
Intel i7 CPU 4.0 GHz). In order to improve performance, we imple-
ment an optimized LM algorithm in C++ by using the Ceres Solver
library [12], a high-performance non-linear solving library. The
C++ implementation is wrapped using pybind11 to invoke the C++
implementation within Python, achieving 4000 FPS on the same
hardware. This optimization allows MagX to perform all compute
on lower power IoT devices, e.g., Raspberry Pi 4B and Zero. For
detailed implementation and evaluation, please refer to Sec. 5.3.

5.2 Pilot Study of MagX
5.2.1 A Leap Motion-assisted benchmarking tool. We propose a
Leap Motion-assisted benchmarking tool to characterize the po-
sition and orientation tracking accuracy of MagX. The Leap Mo-
tion controller is a binocular optical tracking module that captures
the movements of hands and pen-shaped tools. According to We-
ichert et al. [40], a Leap Motion controller can track pen-shaped
tool tips at an accuracy of within 2.5𝑚𝑚 (on an average of 1.2 mm),
which is an order-of-magnitude lower than the targeted tracking
accuracy of our system. Moreover, existing magnetic sensing ap-
proaches usually benchmark their systems with high-cost MoCap
sets, which can easily cost between $2k-$15k [6], a prohibitive hur-
dle for developing and evaluating novel platforms. In contrast, our
prototype system costs less than $200.

We leveraged this tool tracking ability and designed the pen-
shaped tool shown in Fig. 8(a). The pen-shaped tool consists of
three parts: a 3D-printed 20cm long cylindrical stick with diameter
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(a) Pen-shaped tool (b) Experimental setting (c) Leap Motion output (d) Tracking traces

Figure 8: Experimental setup of collecting ground truth data. Note that (d) shows the tracking result versus the ground truth
when the word “mag” was written in space.

of 24𝑚𝑚 and a semi-spherical slot on top, an N40 grade spherical
neodymium magnet with diameter of 20 mm, and a 3D-printed cap
with a tip. We chose a spherical magnet because its magnetic field
flux distribution is close to the dipole model. The magnet was then
embedded at the top of the stick and enclosed by the cap, with its
north pole pointing towards the tip.

The entire experimental setup is depicted in Fig. 8(b). Before con-
ducting experiments, we calibrated the MagX sensor array according
to the procedure in Sec. 4.2.2. During an experiment, Leap Motion’s
2.3.1 Python SDK first reported the position and orientation of the
tool (Fig. 8(c)). With this information and the dimension of the cap,
we can then backtrack the position and orientation of the magnet
in the Leap Motion controller’s coordinate system. Finally, the po-
sition and orientation were translated to the coordinate system of
MagX, and was compared with the output of our tracking algorithm
for evaluation. Our benchmarking tool allows free-form evaluation.
Fig. 8(d) illustrates the tracking result vs. the ground truth (collected
from Leap Motion) when the word “mag” was written in space.

5.2.2 Position and orientation tracking accuracy. For measuring
the position tracking accuracy of MagX, the magnets were moving
vertically in the field of view of the Leap Motion controller with a
fixed orientation. For measuring the orientation tracking accuracy,
angular movement (a zigzag uplifting pattern) was added to the
previous moving pattern.

The position and orientation tracking accuracy of one and two
magnets tracking are shown in Fig. 9. Each bar consists of 233 data
points on average. We define the distance as the Euclidean distance
between the centroids of the magnet and sensor array. According to
the bar plots, the error grows exponentially with distance. Generally,
accuracy increases as sensor array size increases, i.e., the 9.8 × 9.8
layout outperforms other layouts. Some results at close distances
might not strictly follow this observation, which is hypothetically
due to the fact that our magnet is not a perfect dipole (e.g., due
to the imperfect manufacturing). Besides, the process of locating
the north pole of a spherical magnet might also introduce error to
the ground truth of orientation. The performance of tracking two
magnets is generally lower than that of one magnet due to the doubled
unsolved parameters.

Fig. 9 shows that the average tracking accuracy of the best per-
forming sensor array is 1.7 𝑐𝑚 (STD: 0.62 cm) and 0.18 rad (STD:
0.06 rad) for 1 magnet, and 2.6 𝑐𝑚 (STD: 0.46 cm) and 0.54 rad (STD:
0.29 rad) on 2 magnets within 29 𝑐𝑚 distance. Even the smallest
sensor array can achieve an accuracy of 1.8 𝑐𝑚 (STD: 0.17 cm) and
0.13 rad (STD: 0.02 rad) on 1 magnet, and 2.2 𝑐𝑚 (STD: 0.27 cm)

and 0.26 rad (STD: 0.12 rad) on 2 magnets within 19 cm. These
experiment results show that MagX would be sufficient for a wide
range of applications, which we will sketch in Sec. 6 as proof of
concept applications.

5.2.3 Comparison between simulation and experiment result. In
Sec. 3, a simulation tool was used to find the optimal layout of MagX.
After gathering the experimental tracking results, we compared
them with simulation to validate the CAMAD pipeline.

Fig. 10 shows the comparison between the simulation and ex-
perimental results on the 6 × 6 sensor layout. At short distance,
tracking accuracy of the simulation is shown to be better than that
of the experiment. We conjecture that this is because the simulation
assumes the magnet to follow the ideal dipole model, while the
magnetic field flux may slightly deviate from the dipole model in
the real-world. As distance increases, simulation and experiment
results were observed to match up, confirming our conjecture: the
magnetic field around any magnet looks increasingly like the field
of a dipole as the distance from the magnet increases. Thus, we con-
clude that our simulation results are valid, especially when distance
is greater than or equal to 20 cm.

5.2.4 Comparison between different magnet sizes. Apart from the
size of the sensor array, the size of magnet will also affect tracking
accuracy, since different magnets’ sizes may shape the morphologi-
cal feature of the magnetic field.

Based on the result from the previous benchmarking section
which uses N40 grade spherical neodymium magnets with 20𝑚𝑚

diameter, we further tested the tracking performance of magnets of
the same material but with 15𝑚𝑚 and 10𝑚𝑚 diameter on the 6× 6
layout. The comparison results are shown in Fig. 11. As illustrated
in the figure, tracking performances of magnets of different sizes
are comparable at a close distance. When the distance increases,
the larger the magnet, the higher the tracking accuracy.

5.3 Overheads of MagX
We conduct a thorough overhead analysis of MagX’s sensing array
and computing unit. In our experiment, we profiled the energy
drain of our sensor array and computing unit by using a power
meter (with measurement accuracy of 0.001𝑊 ). For the CPU usage,
we used htop command line tool.

The experimental results showed an average of 0.22𝑊 power
drain on MagX sensor array during operation at full sampling speed.
Therefore, with our small battery pack (lithium Ion polymer battery
of 3.7 𝑉 , 500𝑚𝐴ℎ), akin to smartwatch’s battery capacity, MagX’s
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(a) Position error of tracking one magnet (b) Orientation error of tracking one magnet

(c) Position error of tracking two magnet (d) Orientation error of tracking two magnets

Figure 9: Position and orientation tracking performance of one and two magnets on three different sizes arrays.

Figure 10: Comparison between simulation and experiment
result on 6 × 6 layout.

Figure 11: Comparison of the tracking result of three differ-
ent magnets on 6 × 6 layout.

sensing array can last about 8 hours — sufficient battery life for
various real-world applications. One can easily boost MagX’s battery
life with a larger battery pack without compromising its wearability.
Future implementations can explore dynamic sampling rates and

employ hardware interrupts to wake/sleep the array for further
power consumption improvement.

Additionally, we implement MagX using a Raspberry Pi 4B with
8G of memory to analyze its performance on mobile devices. To
push it to the limit, we further test the system on a emulated environ-
ment of Raspberry Pi Zero, a tiny low-power hardware. Considering
that the Raspberry Pi Zero is equipped with a 1 GHz single-core
CPU, while a Raspberry Pi 4B is equipped with a 1.5 GHz quad-
core CPU, limiting the CPU power to 17% is reasonable for the
emulation. These two setups are compared in Table 2. Even with
13.1% of the CPU usage, our algorithm can still maintain 42% of the
tracking speed, making MagX feasible to be implemented on COTS
low power-consumption IoT devices such as smartwatch. Note that,
the ultra-low power drain of 0.159𝑊 enables 16-hour usage for
the computation node on a 500𝑚𝐴ℎ battery. For further decreased
compute power requirements, future implementations can explore
on-microcontroller or hardware-accelerated implementations.

CPU Quota CPU Usage Average FPS Power Drain
100% 181.21% 1213.89 0.643w
17% 23.79% 514.23 0.159w

Table 2: Comparison between a fully and a 17% (Pi Zero em-
ulation) powered Raspberry Pi 4B.

6 USE CASES OF MAGX
We outline three applications to showcase the versatility of MagX:
face-touch detection, controller-free AR interaction, and endocap-
sule tracking. For each use case, we introduce the form factor spec-
ifications (i.e., sensor array size, magnet size, placement), followed
by experimental results.
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(a) Face touching tracking (b) AR interaction (c) Endoscopy tracking

Figure 12: Three use cases of MagX. (a) tracking face touching behavior with passive magnets on both hands; and (c) controller-
free free form AR interaction; (d) tracking endocapsule movement.

6.1 Face-touch tracking
People subconsciously touch their face (e.g., eyes, ears, nose, and
mouth) 23 times/hour [20] on average, letting bacteria and viruses
enter the body through mucous membranes, leading to staph and
other severe respiratory infections (e.g., COVID-19). Therefore,
detecting and reducing face-touch events could significantly limit
the spread of diseases.

MagX can help enable two novel form factors, i.e., the cap and
badge (as shown in Fig. 12). For the cap form factor, the user will
be wearing a cap with the sensor array placed on the brim and
two magnet rings on two index fingers. Since the magnets are
directly attached to the fingers, their positions can serve as good
approximations of fingertip positions. For the badge form factor,
sensor array and magnets should be placed at the user’s chest and
wrists, respectively. To find the fingertip positions, the magnets are
places on the user’s wrists with its north pole pointing towards
where relaxed fingertips naturally lie. In this way, the positions of
index fingertips can be approximated with magnets’ position and
orientation together with the length of a relaxed hand.

In both form factors, the 6×6 sensor array and 20𝑚𝑚 magnets
are used. Both form factors assume that an unconscious face touch-
ing event only involves one hand. Thus, the one-magnet tracking
algorithm is adopted.

Users’ wearing of MagX will not be interfered with by each oth-
ers’ magnets. The magnetic field strength degrades quickly as the
magnet–sensor distance increases. Under the current settings, i.e.,
neodymium magnet, MLX90393 magnetometer, and the sensor lay-
out, the sensor readings are overwhelmed by the sensor noise be-
yond 40𝑐𝑚. According to the four zones of inter-person distance
(based on the study of proxemics [22]), the intimate personal range
is up to 18 inches (45cm) — MagX’s sensing range is within the inti-
mate personal zone. Hence, MagX is robust to the interference from
the magnets worn by other users.

Compared to prior work on face-touch detection (e.g., using the
headphone speaker and microphone on a smartphone), MagX offers
three unique advantages:

• Fine-grained. MagX can detect face touching at centimeter-
level accuracy. This feature can reliably profile the user’s
face touching behavior, thus enabling new applications. For
example, by recognizing the number of eye-rubbing events,
MagX can suggest the user visit an eye clinic for eye drops
prescriptions.

• Training-free. Thanks to the high tracking accuracy, MagX
can detect the touched region directly from the derived geo-
metric data, thus achieving a training-free usage modality.
The user only needs to provide one-time information of
his/her face geometry. We will elaborate an exemplary pro-
cess in this section.
• Highly usable. Compared to the predominant smartwatch-
based method, MagX can achieve two-hand tracking, allowing
seamless face-touch detection.

For the face geometry information, one can use the standard human
face geometry measurement or measurement gathered from their
own faces. To do this, users will be asked to put their fingers on
different regions of their face (i.e., left eye, right eye, nose, mouth,
left cheek, and right cheek) and their jaw, left ear, right ear for a
short period to collect data. Here, LC, LE, M, N, RC, RE, and No in
Fig .13 represents left cheek, left eye, mouth, nose, right cheek, right
eye, and no touch, respectively. The tracking results of nose, jaw,
left ear, right ear data are used to define the boundary of one’s face,
while the rest of the data are used to pinpoint each part of their
faces. After characterizing their faces, users can start using MagX to
track their fingers. Alg. 1 summarizes the detection algorithm.

6.1.1 Experiments. Figs. 13 (a) and (c) show the tracking trajectory
of the cap and badge form factors, respectively. The classification
results are shown in Figs. 13 (b) and (d). Specifically, the cap form
factor shows steady classification performance for all face areas
with an average accuracy of 92%. Compared to the cap form factor,
the badge has higher wearability by sacrificing certain accuracy.
There are two reasons for this: (1) the sensor array is not fixed
relative to the user’s face; (2) the varying hand posture (e.g., bending
the finger) may introduce error when deriving the user’s fingertip
position based on the wrist position and orientation.

6.2 Controller-free AR Interaction
MagX helps enhance seamless hand-based AR interaction by en-
abling two essential features: NLOS-resilience and controller-free.
These features help several applications, e.g., hands-based interac-
tion under poor lighting conditions.

Users can put the 6×6 MagX on their wrists (shown in Fig. 12(b)),
with two 15𝑚𝑚magnets worn in as rings. The two-magnet tracking
algorithm constantly tracks the position and orientation of the two
magnets. We built a lightweight hand-pose kinematic model (as
shown in Fig. 14), which utilizes the position and orientation of
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(a) Tracking trajectory. (b) Result.

(c) Tracking trajectory. (d) Result.

Figure 13: The experimental results of face touching. The
first and second rows show the performance of the cap and
badge form factors, respectively.

Algorithm 1 Algorithm for Face touching detection
1: Inputs:

Sensor layout, Sensor readings
2: // Check the magnet existence using SVM
3: if exist_magnet(readings) = 0 then
4: class← No touch
5: else
6: // Tracking the magnet
7: [position, orientation] = LM(reading,layout)
8: // Compare the tracking position with face boundary
9: if position ∈ boundary then
10: // classify the finger position using KNN
11: class← KNN(position)
12: else
13: class← No touch
14: end if
15: end if

the two magnets to reconstruct poses of fingers that are equipped
with the magnets. Note that users can customize the placement of
magnets to support different usage scenarios.

Existing AR and finger-tracking solutions utilize gloves equipped
with embedded optic sensor (e.g., Nintendo power glove [15]),
IMUs [30], and flex sensors. Even though they can track more DoFs
of hands than MagX, our system consumes less power and can thus
have longer battery life. Furthermore, MagX is less bulky — it only
requires the user to wear two magnetic rings, plus a lightweight
sensor platform on its wrist. There is no need to cover the entire
hands with gloves.

6.2.1 Experiments. We explored four popular hand postures shown
in Fig. 14, i.e., neutral, click, finger heart, and stop. By placing the

Figure 14: MagX for controller-free AR interaction.

sensor array on the user’s wrist, MagX can track the magnets on
the user’s index finger and thumb. Each hand posture’s resulting
position and orientation are fed into SVM using RBF kernel with
parameter 𝐶 = 100 and 𝛾 = 0.001. Evaluation results are presented
in Table 3, with an overall accuracy of >98%. The highly reliable
performance of MagX demonstrates the potential for supporting
more complicated hand postures.

Precision recall F1-score Support
Neutral 0.95 1.00 0.98 271

Click 1.00 1.00 1.00 247
Finger heart 1.00 1.00 1.00 302

Stop 1.00 1.00 1.00 253
None 1.00 0.94 0.97 269

Table 3: Evaluation of hand posture classification.

6.3 Endocapsule Tracking
Capsule endoscopy is an emerging medical tool for detecting early-
stage intestine tumour with an embedded camera. Patients would
be instructed to swallow the capsule for collection of their image
data — after the patient swallows the capsule, the doctor can only to
access the capsule after its excretion. As shown in [7], the capsule
could be stuck in the patient’s digestive tracts (e.g., small intestines),
causing an urgent surgery. Unlike previous applications, which
require “strong” magnets, the endocapsule tracker needs to track
an ultra-small magnet because of the endocapsule’s compact size,
leading to a unique challenge for endocapsule tracking.

To overcome the above challenge, we propose a localization
process similar to medical ultrasound testing [26]. After removing
all magnetic devices, the user is instructed to place the 9.8×9.8
MagX array on the top of his/her abdomen area (e.g., as shown in
Fig. 12(c)). If MagX senses the embedded magnet’s position, i.e., the
system reports a clear dot measurement with a slight deviation,
the endocapsule’s position can be presented as < 𝑥 ′, 𝑦′, 𝑧′ > in
the sensor array’s coordinate system. Suppose the endocapsule is
not within the tracking scope of MagX, i.e., the system reports a
null or noisy measurement, the user should adjust MagX sensor’s
placement and examine the new measurement result. Combining
the sensor array’s placement and tracking result, one can derive
the endocapsule’s location in his/her body. To further enhance
the accuracy, the system would suggest the user perform multiple
measurements at different placement on his/her abdomen.

Compared to existing endocapsule tracking solutions, e.g., X-ray
machines, CT machines, and ultrasonography systems [36], MagX
is affordable, portable, and lightweight. Therefore, with a tiny (i.e.,
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(a) The measurement process.

(b) Experiment result.

Figure 15: The experimental result of endocapsule tracking.

4mm in diameter, as shown in Fig. 15) magnet embedded in the
capsule, MagX allows for in-home self-monitoring of the endocap-
sule’s location and orientation, whereas current approaches are
cost-prohibitive and unsuitable for in-home self-care.

6.3.1 Experimental Results. To gain a statistical understanding of
MagX’s performance, we conducted a real-world experiment for
endocapsule tracking. We fixed the small magnet at the bottom of
a box then laid a pork belly (with a thickness of 6.3 𝑐𝑚, skin on) to
cover the magnet. Note that the small magnet’s diameter is only 4
𝑚𝑚 — a feasible size for most existing endocapsules, of which the
common dimension is 11𝑚𝑚 in diameter and 26𝑚𝑚 in length [5].
This ex-vivo setting emulates the patient’s usage of MagX as we
previously discussed. The numerical results we measured support
our findings in Sec. 4. That is, as the Euclidean distance increases,
the performance decreases exponentially. Specifically, for (0,0,7.7),
(1,1,7.7), (2,2,7.7), (3,3,7.7), (4,4,7.7), and (5,5,7.7) placements, MagX
achieves the averaged accuracy of 7.4𝑚𝑚 (STD: 0.8𝑚𝑚), 7.3𝑚𝑚

(STD: 0.5𝑚𝑚), 8.2𝑚𝑚 (STD: 0.5𝑚𝑚), 9.7𝑚𝑚 (0.8𝑚𝑚), 12.8𝑚𝑚

(1.3 𝑚𝑚), and 19.7 𝑚𝑚 (3.6 𝑚𝑚), respectively. Note that the last
array placement has a Euclidean distance of 10.45 𝑐𝑚, which would
be a sufficient scanner-magnet distance.

7 DISCUSSION
7.1 Limitation
Number of magnets. The current version of MagX can track two
passive magnets. Tracking multiple magnets requires three DoFs
and six DoFs for the backgroundmagnetic field and each magnet, re-
spectively. Since each magnetometer provides information on three
DoFs, theoretically 2𝑛 + 1 magnetometers are needed for tracking 𝑛
magnets. In practice, for robust tracking, more magnetometers are

needed. Our current system can reliably track up to two magnets.
Note that, tracking two magnets is sufficient for addressing several
crucial hand-tracking problems, e.g., tracking two fingers for the
controller-free AR interaction (as discussed in 6.2).

Size of the sensory array. Our current system still takes up a
space of 6𝑐𝑚 × 6𝑐𝑚 × 3.2𝑐𝑚. Despite its compact design, the size is
larger than commodity smartwatches. The size of current MagX’s
form factor is supported by our experimental study. As shown in
Fig. 9, to achieve the targeted sensing accuracy (error less than
2𝑐𝑚 at 20𝑐𝑚 distance), the sensor array can be no smaller than our
current design. By analyzing the tracking performance of sensor
arrays of different sizes, we make a trade-off between the array size
and accuracy, i.e., a larger array usually yields a higher tracking
performance. That is, by determining the accuracy requirement of
the application, one can adjust and re-design the sensor array by
following the design pipeline (as shown in Sec. 4) of MagX.

7.2 Safety of Passive Magnets
Strong magnetic fields may have adverse health effects. According
to the ACGIH, 60𝑚𝑇 is acceptable for routine whole-body exposure
and 600𝑚𝑇 for exposure to the extremities[8]. More conservative
is the WHO’s recent study [1], which recommended the maximum
whole-body exposure to magnetic flux density be limited to 2 𝑇
and 40 𝑚𝑇 for static magnetic field strength. According to our
measurement, the strongest magnet used in MagX has a magnetic
field strength less than 10𝑚𝑇 at 1 𝑐𝑚, which is safe for daily usage
and significantly below both recommendations. Recent concerns
regarding the magnets used in iPhones has highlighted concerns
regarding patients with cardiac implants [11]. For this population,
safe magnetic strength is less than 0.5𝑚𝑇 [2]) and we recommend
users consult with their physician.

8 CONCLUSION
This paper presents MagX, a fully wearable and untethered mag-
netic tracking system with passive magnets. To facilitate the rapid
development of novel magnetometer array designs, we proposed
a hardware design pipeline, CAMAD, which can validate sensor
arrangements and propose optimal sensor layout given a set of
parameters, such as distance and magnet strength. We used this
tool to optimize the final sensor arrangements of MagX to minimize
magnetic strength requirements and maximize effective tracking
distance while still maintaining a wearable form factor. We then
demonstrate that MagX is a highly wearable, reliable, and energy-
efficient tool through three exemplar real-world applications: face
touching detection, controller-free AR interaction, and endocap-
sule tracking. These three examples demonstrate the versatility of
MagX as a robust positional tracking method. We hope these results
inspire further adoption and exploration of magnetic sensing.
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