
Enabling Software-defined PHY for Backscatter Networks
Fengyuan Zhu

Shanghai Jiao Tong University
jsqdzhufengyuan@sjtu.edu.cn

Mingwei Ouyang
Shanghai Jiao Tong University

1999mrou@sjtu.edu.cn

Luwei Feng
Shanghai Jiao Tong University
yundanfengqing@sjtu.edu.cn

Yaoyu Liu
Shanghai Jiao Tong University

lyyu19@sjtu.edu.cn

Xiaohua Tian∗
Shanghai Jiao Tong University

xtian@sjtu.edu.cn

Meng Jin
Shanghai Jiao Tong University

jinm@sjtu.edu.cn

Dongyao Chen
Shanghai Jiao Tong University

chendy@sjtu.edu.cn

Xinbing Wang
Shanghai Jiao Tong University

xwang8@sjtu.edu.cn

ABSTRACT
In this paper, we for the first time show how to enable software-
defined PHY (SD-PHY) to achieve agile reprogrammability in wire-
less backscatter networks. This can facilitate innovations in this
field by relieving researchers from unnecessary engineering work.
With SD-PHY, the tag’s PHY-layer behavior can be neatly defined
by configuring a set of parameters, which allows the common hard-
ware to generate backscattered signals complying with various
wireless protocols. The SD-PHY architecture is based on the key
insight that the tag’s PHY-layer behavior is essentially determined
by reflection coefficient sequence.

The SD-PHY is factually to instruct the hardware: How to gen-
erate various reflection coefficient sequences that meet different
protocols’ requirements at the right time; under what clock rate to
feed the generated sequence into RF switches on the tag. We ab-
stract such instructions into a set of parameters. To make different
parameter values take effect in the runtime, innovative designs of
the generic wake-up receiver, baseband modulator, and clock signal
generator on the tag, which are responsible for executing those
parameterized instructions. We design and implement a general
hardware platform to support the SD-PHY software. Moreover, we
demonstrate that under the unified SD-PHY framework how the
same tag can generate different kinds of backscatter signals, which
could obey standardized protocols such as Wi-Fi (11b/g), BLE, LoRa,
and LTE, as well as highly customized protocols such as OFDMA
backscatter and NetScatter. Experimental results show that the
system presents similar performance no matter it is realized with
universal SD-PHY or a dedicated design approach.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9185-6/22/06. . . $15.00
https://doi.org/10.1145/3498361.3538927

CCS CONCEPTS
• Networks→ Network design principles; Network architec-
tures;

KEYWORDS
Software-defined, Backscatter, PHY

ACM Reference Format:
Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian,
Meng Jin, Dongyao Chen, and Xinbing Wang. 2022. Enabling Software-
defined PHY for Backscatter Networks. In The 20th Annual International
Conference on Mobile Systems, Applications and Services (MobiSys ’22), June
25-July 1, 2022, Portland, OR, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3498361.3538927

1 INTRODUCTION
The past decade has seen numerous backscatter networking tech-
niques proposed, which provide 𝜇𝑊 -level IoT connectivity while
complying with a variety of wireless protocols [1–8]. However,
obstacles still remain in the path of existing backscatter systems
toward practical usage, issues include but are not limited to the
inability to work with COTS receivers, support longer communi-
cation range, higher data rate, and concurrency [9–14]. Looking
back into those existing work is necessary for this research area to
move forward, where the inevitable process is to reproduce both
hardware and software of previously proposed backscatter systems
for comparison. The engineering efforts incurred however hinder
researchers from quickly verifying new ideas about backscatter
communications.

The labor work can be significantly mitigated if the backscatter
tag can be quickly reprogrammed. Imagine that the tag’s PHY
layer behavior can be software defined with only writing a few
parameters in the processor, just like calling a program function,
and then the corresponding baseband design could take effect. All
we need to do is calculating the values of these parameters according
to the backscatter modulation process desired.

In this paper, we propose software-defined PHY (SD-PHY), a
universal design approach that can achieve the goal above. The
essence of the backscatter communication is that the tag modulates
the excitation signal through changing the impedance. The choice
of impedance determines the reflection coefficient of the antenna,
which realizes backscattering. Our key insight in this paper is that
the PHY-layer behavior of the tag can be defined by the sequence

https://doi.org/10.1145/3498361.3538927
https://doi.org/10.1145/3498361.3538927

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng Jin, Dongyao Chen, and Xinbing Wang

Backscattered signal

Excitation signal

Envelope
detector

I

Q

RF switches

RF switches
Excitation signal

(b) SD-PHY tag design

(a) SD-PHY architecture

…
SD-PHY

controller Tags with
SD-PHY

General HW

SD-PHY
Baseband

General HW General HW

Backscattered signal

Excitation signal

Envelope
detector

SD-PHY
I

Q

RF switches

RF switches
Excitation signal

Baseband

(b) SD-PHY tag design

(a) SD-PHY architecture

…
SD-PHY

controller Tags with
SD-PHY

General HW

SD-PHY
Baseband

General HW

SD-PHY
Baseband

General HW

SD-PHY
Baseband

SD-PHY
Baseband

SD-PHY
Baseband

SD-PHY
Baseband

Figure 1: SD-PHY for backscatter.

{Γ1, Γ2, ...Γ𝑖 , ...Γ𝑛}, where Γ𝑖 denotes the reflection coefficient pro-
vided by the hardware. Each of the elements in the sequence Γ𝑖
corresponds to a change in the amplitude, phase, or frequency of
the excitation signal. Switching the tag circuit’s load impedance
according to a certain sequence produces corresponding waveforms
of the backscatter signal. Each of the existing backscatter network
designs factually uses the fixed Γ sequence to generate predefined
backscatter signals.

The SD-PHY enables reprogrammability of backscatter networks
through software defining the Γ sequence. As shown in Fig. 1,
we abstract the sequence computing functionality as the SD-PHY
baseband, which is independent of the general hardware provid-
ing the impedance. The SD-PHY controller remotely manipulates
the SD-PHY baseband so that the tag could generate appropriate
backscatter signals according to designated wireless protocols as
instructed. We manage to let the SD-PHY baseband produce de-
sired reflection coefficient sequence through a set of PHY control
parameters, which avoids the process of burning binary files into
an expensive FPGA chip after mass production. This key advantage
further paves the path for reconfigurable backscatter ASIC, which
fits heterogeneous industrial IoT applications.

Materializing the architecture as shown in Fig. 1 requires the
backscatter system to own new capabilities under the unified PHY-
layer design: 1) Capable of recognizing various excitation signals
from different kinds of RF sources so that the tag could gener-
ate right Γ sequence at right time; 2) able to produce various Γ
sequences different in lengths and elements, in order to accommo-
date different protocols; 3) could feed various Γ sequence into RF
switches in different clock rates according to sampling rates of cor-
responding standards; 4) capable of controlling the tag’s PHY-layer
behavior with respect to 1)-3) by only configuring a few parameters,
in order to achieve agile reprogrammability.

In addressing the issues above, we make following technical
contributions:
• We present a parameterized design of SD-PHY for backscatter
networks (§Section 3). The core of the SD-PHY is the SD-PHY
baseband, which contains the generic wake-up receiver, baseband
modulator, and clock signal generator. Such components are
innovatively designed to obtain the new capabilities required for

reprogramming. We abstract the PHY control scheme into a set of
parameters stored in a centralized control plane, which enables
remotely controlling waveform generation in the tag with agility.

• We show how to realize representative backscatter systems with
SD-PHY design approach. We illustrate how to configure those
control-plane parameters, in order to make the same tag capable
of generating backscatter signals complying with standardized
protocols such as Wi-Fi (11b/g), BLE, LoRa, and LTE under the
unified SD-PHY framework.We also show that the SD-PHY could
realize highly customized backscatter systems including OFDMA
backscatter [15] and NetScatter [16] (§Section 5).

• We design and implement a prototype of the SD-PHY tag, with
which we conduct experiments to evaluate performance of the
backscatter system under different configurations (§Section 6).
We test the system with respect to communication through-
put/range and power consumption. Experimental results show
that the SD-PHY tag presents the same or close performance
compared with the dedicated designs in terms of data rate and
distance.
Platform availability. The SD-PHY hardware platform, includ-

ing schematics, layout, and the software is released for academic
use, and available online [17].

2 PRELIMINARIES
2.1 Primer for Backscatter Networks
The backscatter network normally consists of three components:
the excitation signal transmitter, tags, and the receiver. Existing
designs can be classified according to whether the excitation signal
transmitter could be the legacy infrastructure or must be the dedi-
cated plug-in device, which are termed as compatible and dedicated
backscatter networks respectively in the remainder of the paper.

Compatible backscatter networks such as ambient backscatter
[18], Wi-Fi backscatter [1], and BackFi [19] leverage ambient RF
signals from TV tower or Wi-Fi AP as the source of power and
carrier signal, which however suffer from self-interference thus
results in very limited data rate and communication range. Hitch-
Hike [3] presents a novel idea of codeword translation to resolve
the self-interference issue, which is further developed by FreeRider
[4]. The translation is realized by switching the phase of the ex-
citation signal on the tag, where the modulation is carried out by
the tag’s performing translation or not. The backscattered signal is
then moved to a channel that is other than the excitation signal’s
channel but still in the range of the receiver. The receiver decodes
the message conveyed from the tag by XORing the productive ex-
citation signal from the AP and backscattered signal from the tag
with both following 802.11b. FreeRider streamlines the codeword
translation technique to support the OFDMWi-Fi, Bluetooth, and
ZigBee, where the codeword translation is realized by modifying
amplitude, phase and frequency of the excitation signal.

Dedicated backscatter networks such as passiveWi-Fi [2], NetScat-
ter [16], OFDMA backscatter and DigiScatter [20] adopt the ded-
icated plug-in RF source, where the transmitted excitation signal
mainly consists of the single tone. Such systems directly generate
desired wireless signals through manipulating and reflecting the
single tone, which provides higher flexibility to realize more com-
plicated backscatter networking schemes. For example, NetScatter

Enabling Software-defined PHY for Backscatter Networks MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

tag could directly generate chirp signals with different frequency
shifts, and OFDMA backscatter manages to achieve strict time and
frequency domain synchronization through directly generating
OFDM subcarriers in tags. In the dedicated backscatter network,
the modulation operation in the tag is more like the traditional
wireless transmitter, where the single tone acts as the pure carrier
signal to be modulated by the local baseband signal. The modula-
tion process also yields a frequency shift of the backscatter signal
thus avoiding self-interference with the excitation signal.

The compatible system ismore convenient for deployment, which
leverages legacy infrastructure; the dedicated system provides higher
flexibility, whichmakes it possible for the backscatter network to act
more like the traditional network while maintaining ultra-low level
power consumption. Moreover, existing designs present diverse
capabilities in communication throughput/range as summarized in
[12], which suit various scenarios. It is hard to pick anyone from
those existing backscatter systems fitting all the scenarios. Practical
IoT connectivities are usually heterogeneous [21], thus numerous
and varied tags will coexist. The deployment and maintenance cost
will be considerable if tags are designed in an ad hoc manner.

2.2 PHY Description
The on-tag operations vary in different backscatter networks to
comply with corresponding wireless PHY standards. In particular,
the tag of each systemmust backscatter predefined signal waveform,
so that the receiver obeying corresponding PHY standard could
successfully decode the information conveyed. However, we are
to present a general paradigm below, showing that the essence for
controlling the behavior of the tag in all the backscatter networks
is to control how the baseband signal is generated.

The following equation can be used to describe how the ideal
backscatter signal is generated:

𝑆𝑟𝑒𝑐𝑣 = 𝑆𝑏𝑎𝑠𝑒 · 𝑆𝑠𝑟𝑐 ,
where 𝑆𝑟𝑒𝑐𝑣 , 𝑆𝑏𝑎𝑠𝑒 and 𝑆𝑠𝑟𝑐 denote the received signal at the re-
ceiver, the baseband signal at the tag and the RF source signal
from the excitation signal transmitter, respectively. For any specific
backscatter network, the excitation signal 𝑆𝑠𝑟𝑐 is given, and the
core of the system is to appropriately generate 𝑆𝑏𝑎𝑠𝑒 on the tag,
so that the backscatter signal is equal to the desired 𝑆𝑟𝑒𝑐𝑣 . This
indicates that as long as we could software define 𝑆𝑏𝑎𝑠𝑒 , we are able
to software define the behavior of the tag to accommodate different
standards. That is

𝑆𝑏𝑎𝑠𝑒 =
𝑆𝑟𝑒𝑐𝑣

𝑆𝑠𝑟𝑐
.

Take LoRa backscatter and NetScatter for example, the desired
received signal and the dedicated excitation signal are as shown
in (1), which are the chirp signal and the pure tone, respectively.
Then the baseband signal on the tag is supposed to be as shown in
(2), which is a chirp signal with a frequency shift Δ𝑓 as mentioned
in Section 2.1.{

𝑙𝑆𝑟𝑒𝑐𝑣_𝐶𝑆𝑆 = 𝑐𝑜𝑠 [2𝜋 (𝑓𝑐 + Δ𝑓)𝑡] · 𝑒 𝑗2𝜋 (𝑎2𝑡2+𝑎1𝑡) ,
𝑆𝑠𝑟𝑐_𝐶𝑆𝑆 = 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡) · [1, 1, ... 1] .

(1)

𝑆𝑏𝑎𝑠𝑒_𝐶𝑆𝑆 = 𝑐𝑜𝑠 (2𝜋Δ𝑓 𝑡) · 𝑒 𝑗2𝜋 (𝑎2𝑡
2+𝑎1𝑡) . (2)

We could always figure out what baseband signal the tag is sup-
posed to generate as long as the PHY-layer protocol is given. If we

could manipulate the baseband signal generation, we will be able to
switch the backscatter network’s working protocols, for example,
switching from HitchHike to LoRa backscatter only requires the tag
to generate a different kind of baseband signal. While in quite differ-
ent forms, after quantization process in the tag, the baseband signal
is produced by switching among different impedance provided by
the tag circuit. The baseband signal generation process is eventually
transformed into the sequence generation, and the behavior of the
tag is essentially determined by the reflection coefficient sequence
in the form of {Γ1, Γ2, ...Γ𝑖 , ...,Γ𝑛 }.

3 DESIGN
3.1 Challenges
The PHY layer of the existing backscatter designs could be described
using the Γ sequence. The crux for realizing agile reprogrammability
is how to realize re-configurable PHY software for the tag. Ideally,
we can simply instruct the tag what Γ sequence to generate to
achieve reprogrammability. However, we have to overcome the
following challenges before real software-defined PHY could be
achieved.

• C1: When to generate the Γ sequence? The backscatter sys-
tem differs from the traditional wireless network in that the re-
flecting device is triggered by the excitation signal, instead of ac-
tively transmitting local information. For compatible backscatter
systems, tags need to synchronize with ambient excitation signal.
The excitation signal waking up the tag in existing backscatter
systems is diverse: HitchHike wakes up the tag with a rising
edge of the ambient signal [3] while FreeRider with a special
OOK sequence [4]. In order to achieve reprogrammability, the
tag must be able to recognize various excitation signals, which
enables triggering the tag to generate appropriate Γ sequence
under corresponding configuration.

• C2: How to generate various Γ sequences? Various backscat-
ter designs need the tag to generate different sequences with
various lengths and elements. For example, passive Wi-Fi and
HitchHike need the tag to produce the 11-bit Barker codewords,
while NetScatter needs the tag to produce a sequence containing
2𝑆𝐹 zero or one bits, where 𝑆𝐹 is the spreading factor for CSS
modulation.

• C3:Underwhat clock rate to feed Γ sequence intoRF switches?
The Γ sequence is factually the XOR result of the shift frequency
and the baseband signal after ADC, which needs different clocks
to drive. The frequency shifting operation is widely adopted in
existing backscatter systems to avoid self-interference, where the
value of the frequency shift varies. By default, the frequency shift
Δ𝑓 should satisfy Δ𝑓 ≥ 𝐵𝑊 , where 𝐵𝑊 is the bandwidth of the
excitation signal. Similarly, different protocols require different
baseband rates. For instance, baseband rate (chip rate) of 802.11b
DSSS modulation is 11 MHz, while that for LoRa CSS modulation
can be 125kHz/250kHz /500kHz [22], orders lower than DSSS.
This means that the tag must be able to feed different kinds of Γ
sequences into RF switches in different rates required.

• C4:Which strings to pull so that the tag could generate de-
sired Γ sequence? The centralized controller and the tag should
agree on how to reprogram the PHY behavior. In particular, there

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng Jin, Dongyao Chen, and Xinbing Wang

Figure 2: Structure of the SD-PHY baseband.

should be an instruction set that is able to tailor PHY character-
istics as desired by simple operations such as assigning values
to some PHY parameters. This requires abstracting common
properties of different backscatter designs to create a new PHY
description language.

3.2 SD-PHY Baseband
This section presents the SD-PHY baseband design as shown in
Fig. 2, which contains 4 modules with each resolving one of the chal-
lenges mentioned above correspondingly. The SD-PHY baseband is
the software part over the general hardware of the tag. As shown
in the left part of Fig. 2, the synchronization logic is responsible for
synchronizing the excitation signal transmitter and the tag to wake
up the tag. The modulator module generates the desired baseband
signal in the form of the Γ sequence. The frequency synthesizer
module generates clocks to drive the two modules mentioned above.
The control plane module is for configuring the other 3 modules,
so that the entire PHY can be software defined. The key design of
the SD-PHY baseband is illustrated in the right part of Fig. 2, which
is elaborated below.

3.2.1 Generic Wake-up Receiver. The synchronization logic mod-
ule is essentially a generic wake-up receiver, which could iden-
tify all the constant-envelope excitation signal as used in existing
backscatter networks. In particular, when the excitation signal ar-
rives at the tag, the analog envelope detector circuit in the tag
hardware will forward the binary envelope samples to a correlator
with both coefficients and depth reconfigurable. The generic wake-
up receiver consists of the circuit and the correlator, which triggers
the streaming-out process of the Γ sequence.

Triggering the tag is factually a cross-correlation process. A
widely adopted correlation logic in existing tag designs is the finite-
depth digital correlator as shown in the upper part of Fig. 3. We
can see that there are 𝑁𝑠 one-bit registers for storing the prede-
fined sequence (coefficients), and the sequence abstracted from the
envelope detector circuit correspondingly contains 𝑁𝑠 bits. Those
two fixed-length sequences are correlated; if match, then the tag is
triggered and responds to the excitation signal.

After the correlator is implemented in the FPGA, the length of
coefficients is fixed and all the coefficients will be involved in the
correlation operation, which is unable to support multiple kinds of
excitation signals. For example, the correlator only needs to store
two coefficients ‘10’ for the triggering rising-edge but needs to store
more for the OOK excitation signal such as ‘100100100’. To support
switching among the two kinds of excitation signals, the correlator
should have 9 registers at least, so that the longer one can be stored.
If switching to the ‘10’ case, the two bits have to be stored in those

 Z-1 Z-1 Z-1 Z-1 ... Z-1

Reg1 Reg2 Reg3 RegN-1 RegN

Binary Input
from ED

A
d

d
e

r

Reg1 Reg2 Reg3 RegN-1 RegN

1,0,...

Mask Registers

Correlator
Coefficients

Wake up

≥N 0

1

Figure 3: Correlator of the generic wake-up receiver.

Symbol 2 Symbol 2 Symbol 2 Symbol 2

Symbol 1 Symbol 1 Symbol 1 Symbol 1

0 1 1 0Data

Symbol 1
Symbol 2 SPDT

Figure 4: Framework of the generic modulator.

9 registers, but bits to be stored in the rest of the 7 registers are not
defined. In this case, the correlator may not be able to recognize
the triggering rising-edge, because the FPGA (or ASIC) is unable
to eliminate the rest 7 registers on site and add them back when
needed next time.

To address the issue, we design a mask logic to control the
correlation depth as shown in the lower part of Fig. 3. The logic
gates in blue can bypass the XNOR result if the mask register stores
‘1’, and the XNOR result will be unaffected if the mask register
stores ‘0’. By manipulating the values stored in mask registers, the
actual correlation length and depth can be tailored. Continue the
example, when switching to the ‘10’ case, we could apply a mask
sequence ‘001111111’ meaning that the correlation depth is 2, and
all the correlation taps after are bypassed. Then we could elegantly
set the correlation registers as ‘10*******’ where ‘*’ means “do not
care”.

3.2.2 Generic BasebandModulator. Recall the analysis in Section 2.2,
the Γ sequence is factually the XOR result of the baseband sig-
nal and the frequency shifting signal after quantization. This sec-
tion presents our generic baseband modulator design, and the fre-
quency shifting signal sequence generation is to be explained in
Section 3.2.3.

The length and elements of the baseband signal sequence are
diverse, which is determined by the modulation scheme adopted
by the system. The generic baseband modulator should be able
to generate all kinds of baseband signal sequences to support re-
programmability. This could be naively realized by pre-storing all
possible baseband signal sequences in the tag. Figure 4 shows a
2-symbol case. In particular, the modulated wireless signal is fac-
tually made up of a limited number of symbols such as the barker
code in 11b. We only need to pre-store those symbols following the
Nyquist sampling rate, and the modulated signal sequence given
the local data stream could be generated by combining correspond-
ing symbols. Both the tag side and the receiver side will have a
symbol codebook, which contains 𝑆𝑟𝑒𝑐𝑣 and 𝑆𝑏𝑎𝑠𝑒 respectively. As
long as the symbol 𝑆𝑏𝑎𝑠𝑒 can be discretely quantized by Γ values,
tags can switch to run any modulation scheme. In this manner,
the modulation scheme of the backscatter signal can be software
defined.

Enabling Software-defined PHY for Backscatter Networks MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

φ(n)/2π

Γ seq.

�� ��

� �

��

Q(⋅)
1

Figure 5: Computing 𝜙 (𝑛) and Γ sequence.

Challenge:How to produce PSK, FSK and evenCSS signals
in a both unified and memory-efficient way? While the sym-
bol pre-storage mode is simple and effective for realizing modulated
signals containing limited samples per symbol (SPS), it confronts
the challenge when dealing with the low-rate wide-area wireless
protocol. In particular, the modulated signal in LoRa is the chirp sig-
nal containing 2𝑆𝐹 samples per symbol, with 𝑆𝐹 could vary between
7 and 12. This means that we will have to store 212 samples for a
single symbol in the worst case, which consumes too much memory
resource. Similar problem occurs when we want to generate an over
sampled FSK or PSK signal.

We find that the modulation schemes mentioned above all pro-
duce constant-envelope signals, which can be expressed in the
following form:

𝐵𝐵(𝑛) = 𝑠𝑖𝑔𝑛(𝑐𝑜𝑠 (𝜙 (𝑛))),
where the phase term can be expressed with Taylor’s 2𝑛𝑑 -order
expansion as following:

𝜙 (𝑛) = 2𝜋 · (1
2
𝑎2𝑛

2 + 𝑎1𝑛 + 𝑎0), (3)

𝐵𝐵(𝑛) = 𝑠𝑖𝑔𝑛(𝑐𝑜𝑠 (2𝜋 (1
2
𝑎2𝑛

2 + 𝑎1𝑛 + 𝑎0))) . (4)

We have 𝑛 start from 0 to 𝑁𝑠 − 1 with 𝑁𝑠 the number of samples
contained in a symbol.

Insight : The 2𝑛𝑑 -order expansion already realizes PSK,
FSK and CSS with only four parameters. 1) To realize PSK: we
set parameter 𝑎2 = 0 and 𝑎1 = 0, then we embed payload on 𝑎0,
e.g., 𝑎0 = 0

2𝜋 and 𝑎0 = 𝜋
2𝜋 . 2) To realize FSK: we set 𝑎2 = 0 and

leave 𝑎0 fixed, then we embed payload on 𝑎1. 3) To realize CSS:
we set 𝑎2 to be the chirp rate, 𝑎1 to be the starting frequency and
𝑎0 fixed. Parameter 𝑁𝑠 can be configured according to the symbol
rate. Then symbols containing a large number of samples can be
described using parameters 𝑎2, 𝑎1, 𝑎0, and 𝑁0, thus we only need 4
registers to store those symbols and the storage resource required
is significantly mitigated.

However, directly applying Eq. (4) will incur unaffordable power
consumption due to the use of multipliers. To address this problem,
we replace multipliers with adders by improving the digital circuit
design, which empirically could save 80 − 90% power consumption.
To convert multiplication to addition, we differentiate Eq. (4) as
follows.

𝜙 (𝑛) − 𝜙 (𝑛 − 1) = 2𝜋 · (1
2
𝑎2 (2𝑛 − 1) + 𝑎1), (5)

(𝜙 (𝑛) − 𝜙 (𝑛 − 1)) − (𝜙 (𝑛 − 1) − 𝜙 (𝑛 − 2)) = 𝑎2 . (6)

By twice differentiating, we eliminate multipliers. The final struc-
ture for computing phase 𝜙 (𝑛) is shown in Fig. 5. The first part
of the modulator calculates the total frequency at a specific sam-
pling point based on Eq. (6). The second part calculates the total
phase using Eq. (5). The third part performs output waveform value
decision based on previously obtained total phase.

(a)

��

� �

�
� � = ��

�(� + �)

Digital out

(b)

Q(⋅)
1

Numerically
Controlled
Oscillator

(NCO)

Freq. ctrl.
word DAC

N M

Filter
Analog out

Freq. ctrl.
word

NCO

Figure 6: Rate generation module. (a) Traditional DDS. (b)
Proposed low-power digital frequency synthesizer.

We now show how to calculate the exact values of parameters
𝑎2, 𝑎1 and 𝑎0 using the chirp signal generation as an example. Other
schemes such as PSK and FSK can share the criteria by configuring
𝑎2 = 0. We could substitute the sample index 𝑛 into Eq. (3) with
𝑛 = 𝑡

𝑇𝑠
= 𝑡 𝑓𝑠 , then we have:

𝜙 (𝑡) = 2𝜋 · (1
2
𝑎2 𝑓

2
𝑠 𝑡

2 + 𝑎1 𝑓𝑠𝑡 + 𝑎0),

where the starting frequency and rate of the chirp are:
1
2𝜋

(𝑑𝜙
𝑑𝑡

)𝑡=0 = 𝑎1 𝑓𝑠 , (7)

1
2𝜋

(𝑑
2𝜙

𝑑𝑡2
) = 𝑎2 𝑓 2𝑠 , (8)

respectively. Those parameters are expressed in 16-bit fixed-point
numbers, with values can be calculated as following:

𝑎0 = 𝑟𝑜𝑢𝑛𝑑 (𝜙0/2𝜋 · 216), (9)

𝑎1 = 𝑟𝑜𝑢𝑛𝑑 (𝑓0/𝑓𝑢𝑝𝑙𝑖𝑛𝑘 · 216), (10)

𝑎2 = 𝑟𝑜𝑢𝑛𝑑 (𝐶ℎ𝑖𝑟𝑝𝑅𝑎𝑡𝑒 · 1/𝑓 2𝑢𝑝𝑙𝑖𝑛𝑘 · 216) . (11)

With the first kind of symbol described with 𝑎0, 𝑎1, and 𝑎2, we can
calculate the second kind of symbol in the same way, which could
be described with 𝑏0, 𝑏1, and 𝑏2. Then we can obtain a code book
containing two parameterized symbols.
Remarks: Note that the proposed design based on Taylor’s expan-
sion is not limited to CSS modulation. Since the coefficients contain
the first order and the constant value, it can also support FSK/PSK
modulation. Note that Taylor’s expansion brings zero precision loss
to the symbol generation if we could store and compute infinitely
precise parameter numbers. This is because FSK/PSK/CSS symbols
contain no high-order (> 2) terms in definition. The precision loss
caused by fixed-point number will be evaluated in Section 6.

We could adopt a hybrid method for generating the baseband
waveform sequence. That is, the controller could choose between
the pre-storage mode or the Taylor’s expansion mode. This is be-
cause we use fixed-point numbers to represent 𝜙 (𝑡) coefficients in
logic circuits. To achieve high precision, a 16-bit word length is
usually needed for each coefficient. Then if there are fewer than
16 × 3 = 48 samples per symbol like DSSS/CCK, the first mode can
be more efficient.

3.2.3 Generic Clock Rates Generation. The generic clock rates gen-
eration scheme is responsible for synthesizing multiple clock rates
in order to drive the correlator and the baseband modulator as

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng Jin, Dongyao Chen, and Xinbing Wang

shown in Fig. 2. In order to support reprogrammability, the gener-
ator is supposed to support a wide tuning range and fine-grained
frequency resolution to accommodate diverse requirements.

An analog way to realize clock rate re-adaptation is to reconfig-
ure divider words and reboot the phase-locked loop (PLL) module
in FPGA. A PLL module would synthesize the desired frequency via
generating a much higher frequency using the voltage-controlled
oscillator (VCO) and then divide it by an integer divider. Since the
output signal would be compared with an accurate crystal unit
and there exists negative feedback to keep the output frequency
on track, the output is usually very stable and accurate. However,
using PLL in the scenario under study would encounter two issues
as following: 1) Non-trivial configuration overheads. Output
frequency of the PLL is configured via changing the dividers in
the loop. However, too many possible combinations exist and com-
plicated rules should be followed when choosing divider values.
Commercial PLLs are typically configured with the assistance of
EDA tools [23, 24]. This is unsuitable for quickly configuring many
tags. 2) High VCO frequency results in high power consump-
tion. A PLL first generates a high-frequency clock that is integer
multiple of the reference clock in the VCO, and then divides it
with an integer to reach the target frequency. The high VCO fre-
quency leads to high power consumption even if the target output
frequency is low.

Solution: We design a low-power and easy-to-configure digital
frequency synthesizer to produce configurable clocks. Our design
borrows the idea of direct digital synthesis (DDS) as shown in
Figure 6(a). DDS is a hybrid digital-analog frequency synthesis
method that can generate arbitrary waveform without using the
VCO or PLL. To reduce power consumption, we make a purely
digital design of the synthesizer as shown in Fig. 6(b), avoid using
DAC and filter. Our key observation here is that we do not need
to generate an analog sinusoid like a function generator. Instead,
we only need to produce a square wave that can drive a digital
circuit. Thus, we could replace the DAC with a quantization logic
outputting a square wave. We set the frequency control registers
to have 𝑁𝑠 bits, with 𝑁𝑠 equals 16 for the backscatter baseband
and 10 for WuRX. Larger 𝑁𝑠 can bring higher frequency resolution
Δ𝑓 =

𝑓𝑠
2𝑁 while linearly increases the power consumption since

more registers are used in IC. Take uplink clock generation for
example, we use a 40𝑀𝐻𝑧 reference clock and control the output
clock rate by writing different rate control words. The rate value
can be obtained as:

𝑟𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑟𝑜𝑢𝑛𝑑 (𝑓 /40𝑀𝐻𝑧 · 216) (12)
3.2.4 Parameterized PHY Control. The PHY control scheme in-
volves the SD-PHY controller and the SD-PHY tags. The controller
sends control messages to the tag, which are processed by the con-
trol plane as shown in Fig. 2. The control plane stores all necessary
parameters that could completely describe the behavior of the PHY,
including the wake-up receiver registers, baseband modulator co-
efficients, and rate control words. Such parameters are physically
stored in FPGA registers to form a register bank. The controller
could dynamically change values in the register bank to configure
PHY. In particular, the register bank is directly interfaced by a PHY
decoder, which will write new PHY parameters after the config-
uration frame is validated. All the necessary parameters for PHY

Sensors Battery

6.5 cm

3
.1

 cm

Regulators

FPGA

ED + Comparator

RF switch

Figure 7: SD-PHY hardware prototype.

configuration are tabulated in Table 1. Each parameter is uniquely
identified by a 4-bit command type.

In particular, “Mode” is to instruct the tag’s modulator working
in the symbol pre-storage mode or the Taylor’s expansion mode as
described in Section 3.2.2. 𝑆𝑦𝑚𝑏𝑜𝑙1 and 𝑆𝑦𝑚𝑏𝑜𝑙2 are the symbols to
be stored by themodulator for the former mode, while {𝑎𝑖 } and {𝑏𝑖 }
are polynomial coefficients describing the two symbols for the latter
mode. The “𝑆ℎ𝑖 𝑓 𝑡_𝑓 𝑟𝑒𝑞1,2” specifies two frequency shift values for
the two symbols, respectively. “Synch. pattern, mask” specifies
the triggering signal for the tag. “Sync. clk rate” and “Uplink rate”
instruct the generic clock generator how to generate the clock
signal for downlink synchronization and uplink backscattering
communication, respectively. Note that “𝑁𝑠 ” specifies the number
of samples in a symbol regardless the mode chosen, thus the symbol
duration can be configured with 𝑁𝑠 and “Uplink rate”, i.e., symbol
duration equals 𝑁𝑠

𝑈𝑝𝑙𝑖𝑛𝑘𝑟𝑎𝑡𝑒
. “Reset ID” is used to write a new ID

into the tag.
Table 1: PHY parameters.

Parameter Cmd. type Bits
Mode 0111 1

𝑆𝑦𝑚𝑏𝑜𝑙1, 𝑆𝑦𝑚𝑏𝑜𝑙2 1100 - 1101 64, 64
𝑎0, 𝑎1, 𝑎2 0100 - 0110 16, 16, 16
𝑏0, 𝑏1, 𝑏2 0001 - 0011 16, 16, 16

𝑁𝑠 1111 10
𝑆ℎ𝑖 𝑓 𝑡_𝑓 𝑟𝑒𝑞1,2 0000 16, 16

Sync. pattern, mask 1001 16, 16
Sync. clk rate 1010 10
Uplink rate 1011 16
Reset ID 1110 16

We now present a go-through example to show how to configure
PHY with those parameters. Suppose that the controller intends
to configure two tags to work in the passive Wi-Fi mode. After
setting the central frequency of the excitation signal, say 2.412𝐺𝐻𝑧,
we could assign values to those parameters tabulated in Table 1
as follows. 1) Consider the Γ sequence in this case, which consists
of two aspects: a single tone signal with shift frequency and the
baseband chips. To avoid self-interference, the shift frequency is set
as 20𝑀𝐻𝑧 using command type ‘0000’ with the value 𝑓 𝑖 (215, 0, 16, 0)
1 according to Eq. 12. For the baseband Γ sequence itself, since
802.11b DSSS modulation adopts the Barker code, there are two
kinds of symbols need to be stored, ‘10110111000’ and ‘01001000111’.
1 𝑓 𝑖 (𝑣, 𝑠, 𝑤, 𝑓) represents a fixed-point number with the value 𝑣, signedness 𝑠 , word
length 𝑤 and fraction length 𝑓 [25].

Enabling Software-defined PHY for Backscatter Networks MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Figure 8: SD-PHY realizing passive Wi-Fi.

As the length of each symbol (11 bits) is short, we could use the pre-
storage mode of the modulator. This choice is realized by sending
the SD-PHY command with the type ‘0111’. 2) Now we specify the
feed-in rate for the baseband sequence, which is 11𝑀𝐻𝑧 according
to the protocol. We send a command with type ‘1011’ and value
𝑓 𝑖 (18022, 0, 16, 0) according to Eq. 12.

4 HARDWARE PLATFORM
We implement a generic hardware prototype to accommodate the
SD-PHY framework as shown in Figure 7. The digital circuit of SD-
PHY is written in Verilog and deployed in a low-power flash-based
FPGA GW1N-LV4 [26]. The tag can be powered by a standard 3V
coin battery widely used in wearable devices. The voltage regulators
are connected to the battery and power the remaining circuit. An
envelope detector IC along with a comparator works as the analog
receiver and provides input for the generic WuRX. An ADG902 RF
switch controlled by the FPGA is for backscatter. Two sensors are
also available on the tag: a TI HDC2080 temperature and humidity
sensor, and a TDK INMP621 low-power microphone.

5 CASE STUDIES
In this section, we show how to use the SD-PHY design framework
to realize backscatter systems complying with both standardized
and highly-customized wireless protocols.

5.1 Standardized Protocols
5.1.1 Wi-Fi backscatter. We first verify the go-through example
mentioned in Section 3.2.4 with the prototype. Figure 8(a) shows the
experiments environment and corresponding results. In realizing
passiveWi-Fi, we make the excitation signal (single tone) generated
in channel 2, and the tag shifts the single tone to channel 6 for
backscatter. We use a HUAWEI MATE 30 smartphone and a DELL
XPS 13 laptop to demodulate the passive Wi-Fi packets. We also use
a cross-platform software NetSpot [27] to report measured RSSI.
The results are presented in Fig. 8.

We next show how to make the SD-PHY tag that already works
in passive Wi-Fi mode switch to the HitchHike/FreeRider mode.
To this end, we need to modify the correlator coefficients because

Measured RSSI

1m

-72dBm -53dBm -68dBm

0 10 20 30 40
-80

-70

-60

-50
Tx-to-tag distance = 1m

Distance (m)

R
SS

I (
d

B
m

)

Corridor experiment

(c)

Capturing backscatter
packets using a MacBook

Pro and Wireshark

(a)

-72dBm -53dBm -68dBm

1m

Tx Tag Rx (b)

Figure 9: SD-PHY realizing codeword translations.

HitchHike/FreeRider needs to synchronize with the excitation sig-
nal. For synchronization, we adopt the rising edge ‘100...111’ with
mask ‘001...111’ as explained in Section 3.2.1. Alternatively, we
can follow the packet length modulation by translating it into an
equivalent OOK sequence. Since FreeRider [4] does not elaborate
on the sequence, we simply use the sequence ‘0001110000011111’.
To perform codeword translation with two phases, we set 𝑆𝑦𝑚𝑏𝑜𝑙1
as ‘0’ and 𝑆𝑦𝑚𝑏𝑜𝑙2 as ‘1’ with 1/(4𝜇𝑠 ∗ 4) = 62.5𝑘𝐻𝑧 symbol rate.
We note that although 802.11g has a 250𝑘𝐻𝑧 symbol rate, the scram-
bling, encoding and interleaving process is performed over the bits
across 4 symbols [4]. To validate our design, we sendWi-Fi beacons
periodically over channel 2 and receive the backscatter signal with
a Macbook Pro laptop in channel 6. The packets are captured using
Wireshark [28]. We present the spectrum of the backscatteredWi-Fi
signal and the received packets in Figure 9.

5.1.2 BLE backscatter. We realize the BLE backscatter scheme pre-
sented in [8] with the SD-PHY method, which turns out to be
non-straightforward due to the unusual BLE modulation scheme.
There are two types of modulation techniques in general: memory-
less modulation and modulation with memory. The difference lies
in whether the modulated symbol is independent of previous sym-
bols. In most wireless protocols like 802.11, memoryless modulation
techniques (BPSK and QAM) are used. However, the modulation
technique used in BLE is GFSK, a modulation technique with mem-
ory. It differs from the classic FSK modulation in that the phase
is continuous and the frequency transitions are Gaussian filtered.
This problem is also introduced in [10]. Exactly realizing GFSK is
impractical due to the Gaussian filtering is outside the scope of our
baseband framework. However, we can best approximate the GFSK
modulation with continuous-phase FSK (CPFSK) with the Taylor’s
series computing.

Recall that the 𝜙 (𝑛) and Γ sequence are computed using integral
structure as shown in Fig. 5. The second accumulator stores the
total phase during the phase calculation. To provide the function
of phase continuity, we avoid clearing the phase inside the second
accumulator in Fig. 5 when two initial phases (𝑎0 and 𝑏0) are the
same.

Now we introduce how we set SD-PHY parameters to realize
BLE backscatter where the tag performs CPFSK. We let the trans-
mitter send a single-tone carrier in 2400 MHz, which is 2MHz

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng Jin, Dongyao Chen, and Xinbing Wang

Rx

Tx

(a)

Tag

P
SD

 (
d

B
m

/H
z)

R
SS

I (
d

B
m

)
Distance (m)

(b)

(c)

Figure 10: SD-PHY tag realizing BLE backscatter.

aside from the CH 37 (2402 MHz) channel in BLE. We note that
we choose CH 37 because it is an advertising channel that can
broadcast ADV_NON_CONN_IND packets that can be captured
by COTS devices. To send data ’1’ and ’0’, the tag should provide
2𝑀𝐻𝑧 + 185𝑘𝐻𝑧 and 2𝑀𝐻𝑧 − 185𝑘𝐻𝑧 square wave, respectively.
To realize it, the uplink rate value is calculated as 13107 (8MHz);
𝑎1 and 𝑏1 parameters are set as 14868 and 17900, respectively. The
shift frequency and 𝑎2, 𝑎0, 𝑏2, 𝑏0 values are set as zeros. Figure 10(a)
shows our experiment setup, the tag is 1m away from Tx, and Rx is
a TI CC2540 dongle connected to a laptop. We use SmartRF Snif-
fer software to capture the BLE packets on CH 37 and filter out
backscatter packets based on the advertiser address. The RSSI with
distance is plotted in Fig. 10(b). The spectrum of the CPFSK tag
signal is presented in Fig. 10(c), where the upper side-band (USB)
can be demodulated by the COTS receiver.
5.1.3 LoRa backscatter. We use SD-PHY to realize XORLoRa [14],
which is a streamlined version of PLoRa [7]. Though sharing the
same design philosophy, XORLoRa improves PLoRa by allowing
COTS LoRa receiver to decode the backscattered signal, which fa-
cilitates verifying our unified design. To realize XORLoRa design
under the SD-PHY framework, we make the following configu-
rations. We let 𝑆ℎ𝑖 𝑓 𝑡_𝑓 𝑟𝑒𝑞1 = 3𝑀𝐻𝑧 and 𝑆ℎ𝑖 𝑓 𝑡_𝑓 𝑟𝑒𝑞2 = 0𝑀𝐻𝑧.
The choice of symbol duration is non-straightforward. We note
that due to existence of data interleaving in the COTS LoRa de-
vice, we cannot perform OOK modulation with the resolution of
a chirp length. If payload bits are embedded to LoRa symbols one
by one, then we cannot distinguish modified LoRa data from un-
changed LoRa ones from the received bits stream, because the
original bits are interleaved on multiple chirps [14]. In fact, the
length of a minimum separable data unit lasts for (4 +𝐶𝑅) chirps,
meaning that the final symbol duration in a backscatter tag should
be:𝑇𝑠 = (4+𝐶𝑅) · 2𝑆𝐹 /𝐵𝑊 where𝐶𝑅 is the “coding rate” parameter
[29]. Thus we set the symbol duration as 4𝑚𝑠 which contains a
separable data unit when 𝐶𝑅 = 0. The excitation signal is sent by
a LoRa gateway [22] under 10𝑑𝐵𝑚 transmission power and the
receiver is a LoRa gateway with the same model.

In our experiments as shown in Fig. 11, when the Tx-to-tag
distance 𝑑1 is set to be 1𝑚, the tag-to-Rx distance 𝑑2 is over 140𝑚.
Then we set 𝑑1 = 𝑑2 in the corridor LOS experiment and 𝑑1 = 5𝑚
in the NLOS office environments.
5.1.4 LTE backscatter. LTE backscatter [30] leverages ambient LTE
downlink (DL) traffic to realize continuous backscatter commu-
nication. Tags synchronize with LTE signals by recognizing the

(a) (b)

(c)

Figure 11: SD-PHY tag realizing XORLoRa backscatter.

high-envelope primary synchronization signal (PSS) and secondary
synchronization signal (SSS). The existing LTE backscatter tag re-
quires a pre-filtering LC circuit to expose SSS and PSS envelope [30],
without which it is difficult to detect PSS and SSS. We could gener-
ate a standard LTE baseband signal using MATLAB LTE TOOLBOX
[31] and up-convert it to 750 MHz center frequency using USRP
B210, as shown in Fig. 12. We directly measure the envelope de-
tector output [32], and results are shown in Fig.12(c). We can find
that the envelope does change with time yet the PSS signal cannot
be well distinguished from other LTE symbols in terms of power.
However, performance of the pre-filtering LC circuit is highly de-
pendent on the input signal’s symbol duration, thus equipping such
circuit will impact versatility of the SD-PHY general hardware.

We present a symbol-level LTE backcatter scheme with SD-PHY,
which is free of synchronization on the tag. The basic idea is illus-
trated in Fig. 13. The top of the figure shows an LTE frame serving
as the excitation signal. We could zoom in a fraction of the frame
and find corresponding LTE resource elements (REs) including the
PSS and SSS. When the ambient LTE excitation signal arrives, the
tag modulates the corresponding REs with the local data and then
performs frequency shifting. We can see that there are bad data
exist in the backscattered LTE signal. Note that the second RE of
the backscattered LTE signal covers both “-1” and “1”, resulting in
a bad data. However, this can be easily resolved with a mean filter
at the receiver. In particular, the receiver will compare phases of
the resource elements in both the excitation and backscattered LTE
signal, where reversed phase means “-1”.

In comparison with the sample-level LTE backscatter scheme
[30], the symbol-level counterpart is with lower data rate, which is
the cost of the SD-PHY’s versatility. Our simulation results show
that embedding 1-bit tag data into 7 LTE symbols achieves a good
trade-off between the tag data rate and the LTE frame detection
rate on the receiver side, which makes the SD-PHY tag works at a
1/7 LTE symbol rate (2𝑘𝑏𝑝𝑠).

To configure the SD-PHY tag, we bypass all correlator coefficients
in the wake-up receiver with a mask ‘111...111’. After setting the
wake-up receiver, other parameters are configured as follows. To
avoid interference with LTE excitation signals, the shift frequency is
set to be 10MHz (There are multiple candidate bands for LTE signals,
and we choose 5𝑀𝐻𝑧 band) with a value 𝑓 𝑖 (16384, 0, 16, 0). The
uplink rate is 1/𝑡𝑠𝑙𝑜𝑡 = 2𝑘𝐻𝑧, with a value 𝑓 𝑖 (3, 0, 16, 0). And then
two symbols are 𝜋 phase apart, i.e. 𝑆𝑦𝑚𝑏𝑜𝑙1 =‘0’ and 𝑆𝑦𝑚𝑏𝑜𝑙2 =‘1’.
We send the excitation signal using USRP B210 as shown in Fig. 12(a)

Enabling Software-defined PHY for Backscatter Networks MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Figure 12: SD-PHY tag realizing LTE backscatter.

PSS

SSS

1 frame = 10 subframes Time

Freq.

BW

Tag seq

Ambient LTE

Backscattered LTE

-1 1 -1

P2P2 P2 P2 P2P1 Bad data

Freq. shift

Figure 13: Asynchronous LTE backscatter.

and the received backscatter waveform is illustrated in Fig. 12(b).
Since we bypass the wake-up scheme, the backscatter signal is also
continuous.

5.2 Customized Protocols
5.2.1 OFDMA backscatter. OFDMA backscatter enables high con-
currency in the Wi-Fi backscatter network, which assigns differ-
ent OFDM subcarriers to different tags [15]. A complete OFDMA
backscatter excitation signal consists of a preamble, an OOK se-
quence, and a continuous wave. The preamble is used to synchro-
nize with the Rx and the OOK sequence is to synchronize with all
the tags. On the tag side, we first need to configure the wake-up re-
ceiver correlator coefficients according to the OOK sequence,which
factually is an 11-bit Barker code ‘10110111000’. Unfortunately, we
find that this sequence, both at 250kHz and 500kHz will experience
false triggering in certain environments. This is because ambient
signals in the 2.4𝐺𝐻𝑧 band also contains such a pattern.

In our experiments, we find that the wake-up receiver will be
falsely wakened up at a rate of 0.2-121 packets/sec, even if there is
no OOK sequence sent by our dedicated excitation signal source. To
address the issue, we increase the sequence length by padding five
extra bits to the front of the barker code. The correlator coefficients
become ‘1000010110111000’ and the mask values are ‘000...000’. The
sequence operating at 500𝑘𝐻𝑧 can achieve 99.9% wake-up rate on
average when the tag is 2𝑚 away from the RF source.

We now manage to generate appropriate Γ sequence. First, the
uplink rate is 20𝑀𝐻𝑧 (𝑓 𝑖 (215, 0, 16, 0)) according to the channel
bandwidth. AnOFDMA tag shouldwork on a subcarrier’s frequency.
We take subcarrier 16 (5MHz offset) for example, the parameters 𝑎1
and 𝑏1 are configured as 𝑎1 = 𝑏1 = 𝑟𝑜𝑢𝑛𝑑 (5𝑀𝐻𝑧

40𝑀𝐻𝑧
· 216). For BPSK

modulation, we set 𝑎0 = 𝑟𝑜𝑢𝑛𝑑 (𝜋
2𝜋 · 216) and 𝑏0 = 𝑟𝑜𝑢𝑛𝑑 (0

2𝜋 · 216)

0 1 2 3 4 5

-80

-70

-60

Tx Rx

Distance (m)

R
SS

I (
d

B
m

)

(b)

Fr
eq

u
en

cy
 (

M
H

z)

Time (��)

P
re
a
m
b
le

O
O
K

C
W

 +

B
ac

ks
ca

tt
er

si

gn
al

(a)

Tx

Rx

Tag

Experiment setup

(c)

Number of tags

(d)

Th
ro

u
gh

p
u

t
(M

b
p

s)

Figure 14: SD-PHY tag realizing OFDMA backscatter.

according to Eq. 9. Finally, 𝑎3 and 𝑏3 are set as 𝑓 𝑖 (0, 0, 16, 0). We
send the excitation signal and receive the backscatter signal using
WARP v3. We can observe obtained spectrum as shown in Fig. 14(c).
To measure performance of the OFDMA backscatter, we fix the
positions of both Tx and Rx in an office as illustrated in Fig. 14(a),
then move the tag between those two WARPs. We find that it can
robustly work at any point with data rate 250𝑘𝑏𝑝𝑠 . The measured
RSSI results are shown in Fig. 14(b). We use more tags to verify the
concurrent transmissions. These tags are assigned with different
and adjacent subcarriers (subcarrier index 16-19) by configuring
different 𝑎1 and 𝑏1 values. As shown in Fig. 14(d), the aggregated
throughput linearly increases when there are 1 to 4 tags.
5.2.2 NetScatter. NetScatter is another high-concurrency backscat-
ter network that uses CSS+OOK modulation in Sub-1GHz band.
Each tag is assigned a unique starting frequency regulated in LoRa,
which presents the corresponding spectrumpattern after downchirp-
ing and FFT at the receiver. Presence and absence of the pattern
means that the tag associated with the pattern is transmitting bit 1
or 0, respectively.

To configure SD-PHY parameters for NetScatter, the first step is
to consider the wake-up receiver. We still use the configurations in
Section 5.2.1, as the detailed synchronization sequence and rate are
not explicitly mentioned in the literature. To generate NetScatter
Γ sequence, the uplink rate is set to be 500𝑘𝐻𝑧 with the value
𝑓 𝑖 (819, 0, 16, 0). To avoid self-interference, the shift frequencies
are set to be 3𝑀𝐻𝑧 and 0𝑀𝐻𝑧 with values 𝑓 𝑖 (4915, 0, 16, 0) and
𝑓 𝑖 (0, 0, 16, 0), respectively. For generating the chirp sequence, we
set 𝑎2 = 𝑟𝑜𝑢𝑛𝑑 (𝐵𝑊 2

2𝑆𝐹 · 1
𝑓 2𝑠

· 216) according to Eq. 11. We let 𝑓𝑠 =

𝐵𝑊 = 500𝑘𝐻𝑧, and 𝑆𝐹 = 10, respectively. Then we can obtain
𝑎2 = 𝑓 𝑖 (26, 0, 16, 0). We assign the FFT bin 0 to the single tag thus
𝑎1 = 0. Parameters 𝑏2, 𝑏1 and 𝑏0 are set to be zeros for the OOK
modulation.

In our experiments, the excitation signal transmitter is an analog
signal generator [33] with 30𝑑𝐵𝑚 transmission power. The exci-
tation signal is a single tone at 910𝑀𝐻𝑧. The receiver is a USRP
B210 connected to a laptop for signal processing. To illustrate the
backscatter signal spectrum, we let the Rx work at 910𝑀𝐻𝑧 center
frequency with a 10𝑀𝐻𝑧 sampling rate. The spectrum is shown
in Fig. 15(d). We can see that although the backscatter signal is
configured to perform upchirping, there is a company downchirp.
This is due to the generic hardware of SD-PHY tag cannot per-
form IQ modulation, and can only generate a real Γ sequence:
𝑐𝑜𝑠 (2𝜋Δ𝑓 𝑡) · 𝑐𝑜𝑠 (2𝜋 (𝑎2𝑡2 + 𝑎1𝑡 + 𝑎0)). We perform decomposition:
(12𝑒

2𝜋Δ𝑓 𝑡 + 1
2𝑒

−2𝜋Δ𝑓 𝑡) · (12𝑒
2𝜋 (𝑎2𝑡2+𝑎1𝑡+𝑎0) + 1

2𝑒
−2𝜋 (𝑎2𝑡2+𝑎1𝑡+𝑎0)).

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng Jin, Dongyao Chen, and Xinbing Wang

Distance (m)

SN
R

 (
d

B
)

Experiment setup

Tx

Rx

d1

d2

Corridor, d1 = d2
(a) (b)

1 2 3 4 5 6 7
Time (ms)

Fr
eq

u
en

cy

(M
H

z)
5

4

3

2

1

0

-1

-2

-3

-4

-5

1 10
500kHz

SF=10

Downchirp

Upchirp

(d)

Tag
1 2 3 4

0

0.5

1

1.5

2

Number of tags

Th
ro

u
gh

p
u

t
(k

b
p

s) (c)

Figure 15: SD-PHY tag realizing NetScatter.

Wi-Fi(b) Wi-Fi(g/n) BLE LoRa LTE OFDMA NetScatter

Lo
ss

 (
d

B
)

0

2

4

6
Loss (P) Loss (A)

Figure 16: Precision loss of the tag’s modulation.

Then two intermediate frequency components show up, with each
consisting of a pair of an upchirp and a downchirp. Those company
downchirps will not impact the NetScatter performance due to the
frequency orthogonality.

In other experiments, the Rx is configured to operate at 913𝑀𝐻𝑧,
which is the center frequency of the backscatter signal with a 4MHz
sampling rate to avoid the excitation signal. When the Tx-to-tag
distance is 1𝑚, the backscatter distance is beyond the scale of our
test environments, we thus measure the worst case, i.e. when 𝑑1 =
𝑑2. The corridor experiment results are shown in Fig. 15(b). The SNR
is measured after performing downchirping to the raw received
signal. To support concurrent transmissions from multiple tags, we
assign different 𝑎1 values to different tags while leaving 𝑎2, 𝑎0 and
{𝑏𝑖 } unchanged. We verify the concurrent transmission with 4 tags
randomly distributed in an 7𝑚 × 8𝑚 office room. The 𝑎1 values are
at the interval of 192, which corresponds to the adjacent tags under
𝑆𝐹 = 10, 𝑆𝐾𝐼𝑃 = 3 in [16]. The throughput with the number of tags
is shown in Fig. 15(c).

6 PERFORMANCE EVALUATION
Precision loss of the tag’s modulation. We now evaluate the
signal precision loss of the SD-PHY tag’s modulation. We note
that the precision loss happens in two stages: a) the Taylor series
calculation; b) the mapping from inner phase to the available Γ
values provided by the generic hardware. To evaluate this, We
simulate the tag’s inner logic behavior under the Simulink discrete
simulation environment and export the fixed-point phase behavior
𝜙 [𝑛]. The results are compared with the ideal double-type signal
using normalized cross-correlation at the point of zero offset. We
define the correlation coefficient value at zero offset as the loss
because it reflects how the signal differs from the ideal waveform
with a ratio. The results are illustrated in Fig. 16. The dark blue
bars (Loss (P)) represent the precision loss caused by the phase
calculation in stage a). The yellow bars (Loss (A)) represent all the

Wi-Fi(b) Wi-Fi(g/n) BLE LoRa LTE OFDMA NetScatter

Th
ro

u
gh

p
u

t
(b

p
s) (a)

10�

10�

10�

10�

Wi-Fi(b) Wi-Fi(g/n) BLE LoRa LTE OFDMA NetScatter

(b)

D
is

ta
n

ce
 (

m
)

10�

10�

10�

10�

10�

SD-PHY Dedicated designs

Figure 17: SD-PHY vs dedicated approaches.

precision loss caused in both stages. We can see that the precision
loss caused by Taylor series calculation is negligible while the Γ
mapping causes the most loss.

Communication throughput/range.We compare performance
of the backscatter systems, which are realized by the proposed SD-
PHY design and the dedicated design approach as presented in the
literature, respectively. The SD-PHY tag is configured as described
in the case studies section. We set the Tx-to-tag distance to be 1𝑚
and measure the maximum achievable PHY data rate at the receiver
and the maximum tag-to-Rx distance.

Experimental results are shown in Fig. 17. The tag’s modula-
tion order, transmitter’s transmission power and bandwidth all
influence the overall performance. In Fig. 17(a), when realizing
LTE backscatter, systems realized by the SD-PHY approach present
lower data rate compared with that by dedicated approach reported
in the literature. This is the price of flexibility. In particular, the
original LTE backscatter system needs to customize the ED circuit
to realize synchronization, which is avoided by the SD-PHY design
approach (recall Section 5.1.4). The asynchronized LTE backscatter
method sacrifices the capability of detecting PSS and SSS signal for
the universal analog front end. Thus the slot-level modulation is
adopted for protocol compatibility and causes 103 data rate degrada-
tion compared to the literature. In Fig. 17(b), the SD-PHY system’s
communication range is similar to those with dedicated designs
except for the lower range in the LoRa backscatter case. This is
because the LoRa backscatter adopts a PA to increase the excitation
signal power to 30dBm [6].

Some backscatter systems using the original dedicated design
can achieve higher data rates than using the SD-PHY design ap-
proach (e.g. 11𝑀𝑏𝑝𝑠 data rate from passive Wi-Fi) for the following
reasons: 1) Different choices of PHY parameters. For example, in
BLE backscatter, we find it infeasible to realize compatible demod-
ulation based on the COTS receiver as mentioned in Section 5.1.2
and hence we alter the modulation scheme, yielding a different
data rate. 2) Limited modulation order due to prototype hardware
constraints. Currently, the SD-PHY tag prototype hardware only
supports one bit per symbol, thus the tag can only adopt DSSS in
realizing 802.11b instead of CCK with a higher data rate. This is
mainly due to the limitation of FPGA we adopt in the prototype
implementation. The data rate could be improved by applying more

Enabling Software-defined PHY for Backscatter Networks MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

resourceful general hardware design, which physically provides
more resources for storing PHY parameters.

Table 2: FPGA resource consumption.

Resource type Used Total Utilization ratio
LUT/ALU 560 4608 12%
Register 560 3549 16%
Block SRAM 0 10 0%

FPGA resource consumption.We evaluate the resource con-
sumption of the SD-PHY baseband. We note that aside from the
baseband logic, there is also a data buffer that stores PHY frame
bits in our design. We use GOWIN FPGA Designer software to syn-
thesize and report the resource consumption of our RTL design in
the SD-PHY tag. The total resource consumption is tabulated in
Table 2. We can see that the SD-PHY design only consumes a small
portion (< 16%) of total resource consumption of the low-power
FPGA that we use.

IC power consumption. We now evaluate the IC power con-
sumption of the SD-PHY design. This includes the power consump-
tion of the universal analog hardware and the digital baseband. For
the analog hardware, we implement an analog front-end similar
to the design in [34]. The envelope detector adopts the pseudo-
balun structure and is completely passive. The comparator con-
sumes 0.41𝜇𝑊 under 2𝑀𝐻𝑧 clock. A ring oscillator based PLL is
designed to produce a 40𝑀𝐻𝑧 system clock, with power consump-
tion 26.2𝜇𝑊 . The results mentioned above are based on Cadence
Virtuoso [35] with SMIC 40nm process. 2) For the digital baseband,
we use Synopsys DC [36] with SMIC 40nm library to synthesize
and report power consumption under 1.1𝑉 voltage supply. To pro-
vide a detailed view of all PHY components, we tabulate power
consumption results of different blocks in Table 3. Power consump-
tion of dedicated designs are from the literature. The total power
consumption considers the sum of three main components (WuRX,
baseband, and rate generation) and the RAM that stores tag data.
The control plane of the baseband is typically not active and only
consumes 0.21𝜇𝑊 . When it is active for PHY configurations, the
power consumption is 72.70𝜇𝑊 at 1𝑀𝐻𝑧 after power optimization.

Table 3: IC power consumption of the digital circuit.

Power(𝜇𝑊) WuRX BB. Rate gen. Total
Passive Wi-Fi <0.01 36.63 39.88 76.77
FreeRider 2.92 31.27 22.89 57.33
BLE BS. <0.01 4.21 25.41 29.87
LoRa BS. 0.88 11.88 4.64 17.65
LTE BS. <0.01 4.21 24.85 29.06

OFDMA BS. 2.92 6.29∗ 21.56 30.77∗
NetScatter 1.46 10.45 9.58 21.48

The results of OFDMA backscatter are marked with asterisks.
The value in the table is obtained according to the lowest fre-
quency subcarrier. The actual power consumption is closely re-
lated to the frequency of the subcarrier used, which is in the range
6.29∼62.48𝜇𝑊 (baseband) and 57.58∼113.78𝜇𝑊 (total). The total
power consumption of the SD-PHY tag IC is compared with the
dedicated designs in Fig. 18. The OFDMA tag that works with

Wi-Fi(b) Wi-Fi(g/n) BLE LoRa LTE OFDMA(L) NetScatter

Po
w

er
 (
�
�

)

10�

10�

10�

10�

OFDMA(H)

10�

SD-PHY Dedicated designs

Figure 18: Power consumption.
lowest-frequency subcarrier is termed as “OFDMA(L)” and that
with highest-frequency subcarrier is termed as “OFDMA(H)”. The
y-axis is in log scale. We can see that in most cases, the SD-PHY
design consumes similar power with dedicated designs (tens of
𝜇𝑊𝑠 , which can be harvested from ambient energy sources). This
means that the unified SD-PHY’s flexibility and versatility are at
the cost of only tens of microwatts due to the dynamic power
caused by the excessive clock frequency and the rate conversion
to achieve a universal PHY. Original BLE and LTE backscatter con-
sume significantly more power than the SD-PHY design, because
reported power consumption of the two schemes is based on pro-
totype measurement, instead of IC simulation. Recent advances in
microelectronics adopt subthreshold designs for low-power mobile
applications [37]. It means that the power consumption the SD-PHY
tag can be significantly reduced if further voltage optimization is
applied in the ASIC design, which is beyond the scope of this paper.

7 DISCUSSIONS
Forward compatibility. For backscatter systems, the excitation
signal transmitter such as Wi-Fi AP, BLE nodes and LoRa base
station complies with standardized protocols. Such protocols are
evolving, which makes forward compatibility a desired design char-
acteristic. In retrospect to the evolution path of those representative
standardized protocols, we find that the SD-PHY potentially sup-
ports forward compatibility.

In particular, Wi-Fi evolves to have higher modulation order:
11g-64QAM, 11n-256QAM, 11ac-1024QAM, ax-4096QAM, while the
fundamental modulation approach adopted is still OFDMwithQAM.
The modulation order change has no impact on the tag, which just
conveys the local information by backscattering the excitation sig-
nal with frequency shifting and PSK. However, the symbol duration
varies in different Wi-Fi versions: 11g-40𝜇𝑠 , 11n-3.6/4.0𝜇𝑠 , 11ac-
3.6/4.0𝜇𝑠 , 11ax-12.8+ 0.8/1.6/3.2𝜇𝑠 . This requires the tag to be able
to adjust the symbol duration, or the inter-symbol interference will
occur. The SD-PHY design supports reconfiguring the symbol dura-
tion. The duration value can be updated to the tag with configuring
parameters “𝑁𝑠” and “Uplink rate” as described in Section 3.2.4.
Similarly, Bluetooth 4.0 and 5.0 both use GFSK modulation but the
bandwidth will increase, LoRa standards have various combina-
tions of 𝑆𝐹 and bandwidth ranges. Such changes in the bandwidth
could potentially impact backscatter for self-interference cancella-
tion. This could be easily resolved by SD-PHY by reconfiguring the
frequency shifting operation.

Cross frequency band operation. Different PHY protocols
are specified under different frequency bands. It requires the SD-
PHY tag to support cross frequency operations. Our generic hard-
ware has three components interfacing the RF signal: the ED, the
impedance network and the antenna. The existing ED is based on
low-barrier Schottky diodes. RF Schottky diodes provided by Infi-
neon and Skyworks naturally support wideband operation up to

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng Jin, Dongyao Chen, and Xinbing Wang

24GHz, which covers the bands of most IoT protocols. Impedance
network made of capacitors and inductors are frequency-dependent.
To make the impedance network independent of the frequency, our
prototype hardware adopts the simplest impedance network: ‘open
circuit’ (+∞) and ‘closed circuit’ (0). We can then calculate the
reflection coefficient as Γ(𝑓) =

𝑍𝐿 (𝑓)−𝑍 ∗
𝑎𝑛𝑡 (𝑓)

𝑍𝐿 (𝑓)+𝑍𝑎𝑛𝑡 (𝑓) , where 𝑍𝑎𝑛𝑡 (𝑓) is
the impedance of the antenna and the 𝑍𝐿 (𝑓) is the impedance of
the load chosen to be connected to the antenna. If the antenna is
perfectly matched at frequency 𝑓 , then 𝑍𝑎𝑛𝑡 (𝑓) = 50Ω. We can
see that the resulted reflection coefficients are 1 and -1 even when
𝑍𝑎𝑛𝑡 is not perfectly 50Ω. Antenna is known to be sensitive to the
frequency. The frequency band where an antenna works is closely
related to the antenna’s shape. For example, monopole antennas
have a length of around 0.25𝜆 for 50Ω impedance, where 𝜆 is the
wavelength of the RF signal. Apart from the shape, we note that
the impedance matching circuit connected to the antenna can also
affect its operating frequency. With dual-band matching process,
we can use an impedance matching circuit with passive LC com-
ponents to realize impedance matching at two different frequency
bands like the case in [38]. The SD-PHY tag is mainly designed for
the applications in 900MHz and 2.4GHz ISM band, therefore this
dual-band matching is sufficient. In our SD-PHY tag prototype, we
use a screw mount monopole antenna [39] which is specified at
GSM bands. This antenna is also adopted by the PlutoSDR produced
by ADI. Experiment results show that the antenna performs well
in 900MHz, 2.4GHz and 5.7GHz ISM bands [40].

FPGA vs ASIC realization. Our hardware platform presented
in the paper is realized with FPGA; however, it is important to note
that the RTL design is fixed in the FPGA. This means that burning a
binary file to change the PHY is not necessary. Even if the SD-PHY
is realized in ASIC (which is what we do during IC simulation), we
are still able to reconfigure the PHY using the scheme as mentioned
in Section 3.2.4. For ASIC design, designers usually deploy some
registers together with an SPI interface for circuit correction to fight
against PVT variations, which is physically equivalent to SD-PHY
design. However, these correction registers are for elimating the
deviation between actual chip performance and design performance
while SD-PHY is to realize a programmable PHY.

Convenience of using the SD-PHY platform. Our SD-PHY
hardware platform supports over-the-air (OTA) PHY updating. To
realize OTA process, a user needs a laptop connected to an SDR.
The SDR should be able to realize 500kHz OOK transmission, which
is a simple mission for most SDRs. A configuration frame generator
written in Python with GUI can help users calculate PHY param-
eters and export complex waveforms for SDR transmission. The
required fields in the GUI correspond to Table 1. The frame genera-
tor software will find valid parameter values that best approximate
the user inputs. If the excitation signal is a pure tone signal, SD-PHY
tag should comply to certain PHY frame structure to be captured
by COTS devices. Therefore, its memory should be written with
corresponding PHY bitstream. This bitstream is expected to be pro-
vided by the user. Some engineering software can help in this task.
We recommend using MATLAB.

8 RELATEDWORK
The proposed SD-PHY architecture provides an efficient way to al-
low the general tag working under various backscatter mechanisms.

We note some recent efforts that have been devoted in this vein.
Gong et al. present an interesting design termed as Multiscatter
[41], which makes the same tag able to simultaneously work with
various excitation signals including Wi-Fi, Bluetooth and ZigBee.
Compared with SD-PHY, the multiscatter tag also demonstrates
a way to integrate different ambient backscatter modulation tech-
niques into the single hardware. The core innovation lies in the
efficient identification of different ambient signal sources. However,
the modulation technique is still fixed and has no reprogramma-
bility, where the versatility is essentially realized in a case-by-case
manner. Restricted by the fixed PHY design, a multiscatter tag is
unable to function like SD-PHY tags in the following aspects: 1)
multiscatter cannot support single-tone transmitters as excitation
signal sources. Essentially, it only supports PSK modulation and
cannot directly synthesize FSK, CSS and DSSS signals. 2) Multiscat-
ter is not compatible with sub-1GHz protocols like LoRa. It is only
designed to work with 2.4GHz ambient RF signal. 3) Multiscatter
does not support concurrent transmissions. All multiscatter tags
behave identically under a specific excitation signal, which can lead
to collisions of backscatter signals.

Backscatter communication itself can be leveraged for cross-
technology communication (CTC) [42, 43]. InterScatter shifts fre-
quencies and backscatters the BLE signal so that the signal can be
decoded by the Wi-Fi receiver [42]. GateScatter is a backscatter-
based gateway bridging ZigBee devices with Wi-Fi hotspot [43]. In
comparison, the SD-PHY focuses on agile network reprogramma-
bility, which works under the designated wireless protocol after
configuration. SD-PHY provides a higher-level design approach,
instead of simply translating among existing backscatter systems.

9 CONCLUSIONS
In this paper, we have presented a novel software-defined PHY
(SD-PHY) framework for backscatter networks. This can facilitate
innovations in this field by relieving researchers from unnecessary
engineering work. With SD-PHY, the tag’s PHY-layer behavior can
be neatly defined by configuring a set of parameters, which allows
the common hardware to generate backscattered signals complying
with various wireless protocols. The SD-PHY architecture is based
on the key insight that the tag’s PHY-layer behavior is essentially
determined by reflection coefficient sequence. The SD-PHY is fac-
tually to instruct the hardware: How to generate various reflection
coefficient sequences that meet different protocols’ requirements at
the right time; under what clock rate to feed the generated sequence
into RF switches on the tag. We have demonstrated that under the
unified SD-PHY framework how the same tag can generate dif-
ferent kinds of backscattered signals complying with Wi-Fi, BLE,
LoRa, LTE, NetScatter, and OFDMA backscatter. Experimental re-
sults show that the system presents the same or close performance
compared to dedicated design approach. The SD-PHY architecture
could facilitate innovations in the field by relieving researchers
from unnecessary engineering work.

10 ACKNOWLEDGEMENTS
The work in this paper is supported by the National Key Research
and Development Program of China 2020YFB1708700, and National
Natural Science Foundation of China (No. 61922055, 61872233,
61829201, 61532012, 61325012, 61428205). This work is supported
by Alibaba Group through Alibaba Innovative Research Program.

Enabling Software-defined PHY for Backscatter Networks MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

REFERENCES
[1] B. Kellogg, A. N. Parks, S. Gollakota, J. R. Smith, and D.Wetherall, “Wi-fi backscat-

ter: internet connectivity for RF-powered devices,” in Proceedings of the 2014 ACM
Conference on SIGCOMM (SIGCOMM 14), pp. 607–618, 2014.

[2] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “Passive wi-fi: Bringing low
power to wi-fi transmissions,” in 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pp. 151–164, 2016.

[3] P. Zhang, D. Bharadia, K. Joshi, and S. Katti, “Hitchhike: Practical backscatter
using commodity wifi,” in Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems (SenSys 16), pp. 259–271, 2016.

[4] P. Zhang, C. Josephson, D. Bharadia, and S. Katti, “Freerider: Backscatter com-
munication using commodity radios,” in Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT 17),
pp. 389–401, 2017.

[5] J. Zhao, W. Gong, and J. Liu, “Spatial stream backscatter using commodity wifi,”
in Proceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 18), pp. 191–203, 2018.

[6] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota, “Lora
backscatter: Enabling the vision of ubiquitous connectivity,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3,
pp. 1–24, 2017.

[7] Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson,
“Plora: A passive long-range data network from ambient lora transmissions,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM 18), pp. 147–160, 2018.

[8] J. F. Ensworth and M. S. Reynolds, “Every smart phone is a backscatter reader:
Modulated backscatter compatibility with bluetooth 4.0 low energy (ble) devices,”
in 2015 IEEE international conference on RFID (RFID), pp. 78–85, IEEE, 2015.

[9] A. Abedi, F. Dehbashi, M. H. Mazaheri, O. Abari, and T. Brecht, “Witag: Seamless
wifi backscatter communication,” in Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM
20), p. 240–252, 2020.

[10] M. Zhang, S. Chen, J. Zhao, and W. Gong, “Commodity-level BLE backscatter,”
in Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 21), pp. 402–414, 2021.

[11] X. Liu, Z. Chi, W. Wang, Y. Yao, P. Hao, and T. Zhu, “Verification and redesign of
OFDM backscatter,” in 18th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2021, April 12-14, 2021 (J. Mickens and R. Teixeira, eds.),
pp. 939–953, USENIX Association, 2021.

[12] X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, A. A. Siddiqi, and Y. Liu, “Aloba:
Rethinking on-off keying modulation for ambient lora backscatter,” in Proceedings
of the 18th Conference on Embedded Networked Sensor Systems (SenSys 20), pp. 192–
204, 2020.

[13] J. Jiang, Z. Xu, F. Dang, and J. Wang, “Long-range ambient lora backscatter
with parallel decoding,” in Proceedings of the 27th Annual International Confer-
ence on Mobile Computing and Networking, MobiCom ’21, (New York, NY, USA),
p. 684–696, Association for Computing Machinery, 2021.

[14] H. Li, X. Tong, Q. Li, and X. Tian, “XORLoRa: Lora backscatter communication
with commodity devices,” in 2020 IEEE 6th International Conference on Computer
and Communications (ICCC), pp. 706–711, 2020.

[15] R. Zhao, F. Zhu, Y. Feng, S. Peng, X. Tian, H. Yu, and X. Wang, “OFDMA-enabled
wi-fi backscatter,” in The 25th Annual International Conference on Mobile Comput-
ing and Networking (MobiCom 19), pp. 1–15, 2019.

[16] M. Hessar, A. Najafi, and S. Gollakota, “Netscatter: Enabling large-scale backscat-
ter networks,” in Proceedings of the 16th USENIX Conference on Networked Systems
Design and Implementation (NSDI 19), pp. 271—-283, 2019.

[17] SD-PHY hardware platform, 2022. https://github.com/Swattzz/SD-PHY-
Backscatter.

[18] V. Liu, A. N. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient
backscatter: wireless communication out of thin air,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM 13), pp. 39–50, 2013.

[19] D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti, “Backfi: High throughput wifi
backscatter,” in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM 15), pp. 283–296, 2015.

[20] F. Zhu, Y. Feng, Q. Li, X. Tian, and X. Wang, “Digiscatter: Efficiently prototyping
large-scale ofdma backscatter networks,” in Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services (MobiSys 20), pp. 42––53,
2020.

[21] Z. An, Q. Lin, P. Li, and L. Yang, “General-purpose deep tracking platform across
protocols for the internet of things,” in Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services (MobiSys 20), pp. 94–106,
2020.

[22] SX1276RF1KAS evaluationmodule. https://www.semtech.com/products/wireless-
rf/lora-transceivers/sx1276rf1kas.

[23] WEBENCH Clock Architect Tool. https://www.ti.com/design-resources/design-
tools-simulation.html.

[24] Clocking Wizard. https://www.xilinx.com/products/intellectual-property/
clocking_wizard.html.

[25] Fixed-point numeric object. https://www.mathworks.com/help/fixedpoint/ref/
embedded.fi.html.

[26] LittleBEE FPGAs. https://www.gowinsemi.com/en/product/detail/2/.
[27] Wi-Fi Site Surveys, Analysis, Troubleshooting. https://www.netspotapp.com/.
[28] Network protocol analyzer. https://www.wireshark.org/.
[29] A. Marquet, N. Montavont, and G. Z. Papadopoulos, “Towards an sdr implemen-

tation of lora: Reverse-engineering, demodulation strategies and assessment over
rayleigh channel,” Computer Communications, vol. 153, pp. 595–605, 2020.

[30] Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu, “Leveraging ambient LTE traffic
for ubiquitous passive communication,” in Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM
20), pp. 172–185, 2020.

[31] MATLAB, “Lte waveform generation and transmission using quick control rf
signal generator.” https://www.mathworks.com/products/lte.html.

[32] A. Devices, “Lt5534, 50mhz to 3ghz rf power detector.” https://www.analog.com/
media/en/technical-documentation/data-sheets/5534fc.pdf.

[33] EXG X-Series Signal Generators. https://www.keysight.com/us/en/assets/7018-
03381/data-sheets/5991-0039.pdf.

[34] P.-H. P. Wang, C. Zhang, H. Yang, D. Bharadia, and P. P. Mercier, “20.1 a 28𝜇w
iot tag that can communicate with commodity wifi transceivers via a single-
side-band qpsk backscatter communication technique,” in 2020 IEEE International
Solid-State Circuits Conference (ISSCC 20), pp. 312–314, 2020.

[35] Virtuoso Layout Suite. https://www.cadence.com/ko_KR/home/tools/custom-ic-
analog-rf-design/layout-design/virtuoso-layout-suite.html.

[36] DC Ultra. https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-
test/dc-ultra.html.

[37] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold design for ultra
low-power systems, vol. 95. Springer, 2006.

[38] TI. Monopole PCB Antenna with Single or Dual Band Option. https://www.ti.
com/lit/an/swra227e/swra227e.pdf?ts=1650272717597.

[39] Jinchang Electron. JCG 401 GSM Antenna. https://jqrorwxhqioplk5p.ldycdn.com/
JCG401-aidqqBpmKjiRliSkjorlklli.pdf.

[40] Analog Devices. ADALM-PLUTO Antennas. https://wiki.analog.com/university/
tools/pluto/users/antennas.

[41] W. Gong, L. Yuan, Q. Wang, and J. Zhao, “Multiprotocol backscatter for personal
iot sensors,” in Proceedings of the 16th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT 20), pp. 261—-273, 2020.

[42] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith, “Inter-technology
backscatter: Towards internet connectivity for implanted devices,” in Proceedings
of the 2016 ACM SIGCOMM Conference (SIGCOMM 16), pp. 356–369, 2016.

[43] J. Jung, J. Ryoo, Y. Yi, and S. M. Kim, “Gateway over the air: Towards pervasive
internet connectivity for commodity iot,” in Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services (MobiSys 20), p. 54–66,
2020.

https://github.com/Swattzz/SD-PHY-Backscatter
https://github.com/Swattzz/SD-PHY-Backscatter
https://www.semtech.com/ products/wireless-rf/lora-transceivers/sx1276rf1kas
https://www.semtech.com/ products/wireless-rf/lora-transceivers/sx1276rf1kas
https://www.ti.com/design-resources/design-tools-simulation.html
https://www.ti.com/design-resources/design-tools-simulation.html
https://www.xilinx.com/products/intellectual-property/clocking_wizard.html
https://www.xilinx.com/products/intellectual-property/clocking_wizard.html
https://www.mathworks.com/help/fixedpoint/ref/embedded.fi.html
https://www.mathworks.com/help/fixedpoint/ref/embedded.fi.html
https://www.gowinsemi.com/en/product/detail/2/
https://www.netspotapp.com/
https://www.wireshark.org/
https://www.mathworks.com/products/lte.html
https://www.analog.com/media/en/technical-documentation/data-sheets/5534fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/5534fc.pdf
https://www.keysight.com/us/en/assets/7018-03381/data-sheets/5991-0039.pdf
https://www.keysight.com/us/en/assets/7018-03381/data-sheets/5991-0039.pdf
https://www.cadence.com/ko_KR/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://www.cadence.com/ko_KR/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.ti.com/lit/an/swra227e/swra227e.pdf?ts=1650272717597
https://www.ti.com/lit/an/swra227e/swra227e.pdf?ts=1650272717597
https://jqrorwxhqioplk5p.ldycdn.com/JCG401-aidqqBpmKjiRliSkjorlklli.pdf
https://jqrorwxhqioplk5p.ldycdn.com/JCG401-aidqqBpmKjiRliSkjorlklli.pdf
https://wiki.analog.com/university/tools/pluto/users/antennas
https://wiki.analog.com/university/tools/pluto/users/antennas

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Primer for Backscatter Networks
	2.2 PHY Description

	3 Design
	3.1 Challenges
	3.2 SD-PHY Baseband

	4 Hardware platform
	5 Case Studies
	5.1 Standardized Protocols
	5.2 Customized Protocols

	6 Performance Evaluation
	7 Discussions
	8 Related Work
	9 Conclusions
	10 Acknowledgements
	References

